Document Type : Review Article

Authors

1 Department of Chemistry, Velammal Engineering College, Chennai, India

2 Department of Chemistry, R.M.K. Engineering College, Kavaraipettai, Chennai-India

3 Department of Chemistry, Vel Tech Rangarajan Dr. Sakunthala R&D Institute of science&Technology, Avadi, Chennai, India

4 Department of Bioinformatics, Pathfinder Research and Training Foundation, Gr. Noida-201308, U.P., India

5 Department of Electronics &Communication Engineering, Velammal Engineering College, Chennai-600066, India

Abstract

Chemotherapy for cancer frequently uses organometallic compounds containing platinum, such as oxaliplatin, carboplatin, and cisplatin. They are effective against rapidly dividing cancer cells because they form DNA adducts that cause DNA damage and cell death. They work against rapidly dividing cancer cells because of their mechanism of action, which involves the formation of covalent DNA adducts that obstruct DNA replication and transcription. It is true that cisplatin, carboplatin, and oxaliplatin three platinum containing organometallic compounds, are frequently utilized in cancer chemotherapy. These substances belong to a group of medications called platinum-based chemotherapeutics, and they have been used to treat a number of cancer types. Covalent DNA adducts are formed by oxaliplatin, carboplatin, and cisplatin to produce their anticancer effects. These substances contain platinum atoms that attach to purine bases in DNA to create intrastrain and interstream cross-links. These cross-links damage DNA and cause cell death by interfering with transcription and DNA replication. Platinum-containing compounds are extremely cytotoxic, especially to rapidly dividing cancer cells, because they can cause damage to DNA. The discovery and application of organometallic compounds containing platinum mark a critical advancement in the cancer treatment, and these compounds are still essential parts of chemotherapy regimens. Ongoing research endeavors to ascertain novel compounds based on platinum or substitute metals that exhibit enhanced effectiveness and diminished adverse reactions. These substances are well-known for their capacity to cause DNA damage in quickly proliferating cells, which can result in cell cycle arrest and eventual cell death. Although these conventional platinum drugs have demonstrated efficacy in treating a range of cancers, side effects and resistance development are linked to them. The dynamic field of research aims to improve the overall effectiveness and tolerability of chemotherapy by searching for new anticancer agents. New compounds with improved properties will probably continue to surface as our knowledge of cancer biology and drug development methods grows, which will help cancer treatment approaches to evolve.

Graphical Abstract

Appraisal of the Impact of Applying Organometallic Compounds in Cancer Therapy

Keywords

Main Subjects

[1]. M. Yusuf, U. Chawla, N. Haque Ansari, M. Sharma, M. Asif, Perspective on metal-ligand coordination complexes and improvement of current drugs for neurodegenerative diseases (NDDs), Advanced Journal of Chemistry, Section A, 2023, 6, 31-49. [Crossref], [Google Scholar], [Publisher]
[2]. F. Hooriabad Saboor, A. Ataei, Decoration of metal nanoparticles and metal oxide nanoparticles on carbon nanotubes, Advanced Journal of Chemistry, Section A, 2024,  7, 122-145. [Crossref], [Publisher]
[3]. H. Pourfaraj, M. Zaefizadeh, A. Vojood, Synthesis and characterization of cisplatin magnetic nanocomposite, Journal of Medicinal and Nanomaterials Chemistry, 2023, 5, 92-105. [Crossref], [Google Scholar], [Publisher]
[4]. U. Ndagi, N. Mhlongo, M.E. Soliman, Metal complexes in cancer therapy–An update from drug design perspective, Drug Design, Development and Therapy, 2017, 599-616. [Google Scholar], [Publisher]
[5]. C. Zhang, C. Xu, X. Gao, Q. Yao, Platinum-based drugs for cancer therapy and anti-tumor strategies, Theranostics, 2022, 12, 2115. [Crossref], [Google Scholar], [Publisher]
[6]. A.M. Florea, D. Büsselberg, Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects, Cancers, 2011, 3, 1351-1371. [Crossref], [Google Scholar], [Publisher]
[7]. L. Zhong, Y. Li, L. Xiong, W. Wang, M. Wu, T. Yuan, W. Yang, C. Tian, Z. Miao, T. Wang, Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives, Signal Transduction and Targeted Therapy, 2021, 6, 201. [Crossref], [Google Scholar], [Publisher]
[8]. A. Bhargava, U.N. Vaishampayan, Satraplatin: Leading the new generation of oral platinum agents, Expert Opinion on Investigational Drugs, 2009, 18, 1787-1797. [Crossref], [Google Scholar], [Publisher]
[9]. A.J. Armstrong, E.S. Garrett-Mayer, Y.-C.O. Yang, R. De Wit, I.F. Tannock, M. Eisenberger, A contemporary prognostic nomogram for men with hormone-refractory metastatic prostate cancer: a TAX327 study analysis, Clinical Cancer Research, 2007, 13, 6396-6403. [Crossref], [Google Scholar], [Publisher]
[10]. D. Tsvetkova, S. Ivanova, Application of approved cisplatin derivatives in combination therapy against different cancer diseases, Molecules, 2022, 27, 2466. [Crossref], [Google Scholar], [Publisher]
[11]. S. Dasari, P.B. Tchounwou, Cisplatin in cancer therapy: Molecular mechanisms of action, European Journal of Pharmacology, 2014, 740, 364-378. [Crossref], [Google Scholar], [Publisher]
[12]. A.-M. Florea, D. Büsselberg, Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects, Cancers, 2011, 3, 1351-1371. [Crossref], [Google Scholar], [Publisher]
[13]. V. O'neill, C. Twelves, Oral cancer treatment: Developments in chemotherapy and beyond, British Journal of Cancer, 2002, 87, 933-937. [Crossref], [Google Scholar], [Publisher]
[14]. A. Granja, M. Pinheiro, S. Reis, Epigallocatechin gallate nanodelivery systems for cancer therapy, Nutrients, 2016, 8, 307. [Crossref], [Google Scholar], [Publisher]
[15]. L. Galluzzi, I. Vitale, J. Michels, C. Brenner, G. Szabadkai, A. Harel-Bellan, M. Castedo, G. Kroemer, Systems biology of cisplatin resistance: Past, present and future, Cell Death & Disease, 2014, 5, e1257-e1257. [Crossref], [Google Scholar], [Publisher]
[16]. C. Stewart, C. Ralyea, S. Lockwood, Ovarian cancer: An integrated review, Seminars in Oncology Nursing, 2019, 35, 151-156. [Crossref], [Google Scholar], [Publisher]
[17]. H. Song, W. Li, R. Qi, L. Yan, X. Jing, M. Zheng, H. Xiao, Delivering a photosensitive transplatin prodrug to overcome cisplatin drug resistance, Chemical Communications, 2015, 51, 11493-11495. [Crossref], [Google Scholar], [Publisher]
[18]. S. Rottenberg, C. Disler, P. Perego, The rediscovery of platinum-based cancer therapy, Nature Reviews Cancer, 2021, 21, 37-50. [Crossref], [Google Scholar], [Publisher]
[19]. J. Holford, S. Sharp, B. Murrer, M. Abrams, L. Kelland, In vitro circumvention of cisplatin resistance by the novel sterically hindered platinum complex AMD473, British Journal of Cancer, 1998, 77, 366-373. [Crossref], [Google Scholar], [Publisher]
[20]. F. Wu, Y. Du, J. Yang, B. Shao, Z. Mi, Y. Yao, Y. Cui, F. He, Y. Zhang, P. Yang, Peroxidase-like active nanomedicine with dual glutathione depletion property to restore oxaliplatin chemosensitivity and promote programmed cell death, ACS Nano, 2022, 16, 3647-3663. [Crossref], [Google Scholar], [Publisher]
[21]. G. Doshi, G. Sonpavde, C.N. Sternberg, Clinical and pharmacokinetic evaluation of satraplatin, Expert Opinion on Drug Metabolism & Toxicology, 2012, 8, 103-111. [Crossref], [Google Scholar], [Publisher]
[22]. H. Choy, Satraplatin: An orally available platinum analog for the treatment of cancer, Expert Review of Anticancer Therapy, 2006, 6, 973-982. [Crossref], [Google Scholar], [Publisher]
[23]. E.L. van Dorp, A. Yassen, A. Dahan, Naloxone treatment in opioid addiction: The risks and benefits, Expert Opinion on Drug Safety, 2007, 6, 125-132. [Crossref], [Google Scholar], [Publisher]
[24]. L. Kelland, Broadening the clinical use of platinum drug–based chemotherapy with new analogues: Satraplatin and picoplatin, Expert Opinion on Investigational Drugs, 2007, 16, 1009-1021. [Crossref], [Google Scholar], [Publisher]
[25]. Y.R. Zheng, K. Suntharalingam, T.C. Johnstone, H. Yoo, W. Lin, J.G. Brooks, S.J. Lippard, Pt (IV) prodrugs designed to bind non-covalently to human serum albumin for drug delivery, Journal of the American Chemical Society, 2014, 136, 8790-8798. [Crossref], [Google Scholar], [Publisher]
[26]. M. Frezza, S. Hindo, D. Chen, A. Davenport, S. Schmitt, D. Tomco, Q. Ping Dou, Novel metals and metal complexes as platforms for cancer therapy, Current Pharmaceutical Design, 2010, 16, 1813-1825. [Crossref], [Google Scholar], [Publisher]
[27]. X. Yuan, W. Zhang, Y. He, J. Yuan, D. Song, H. Chen, W. Qin, X. Qian, H. Yu, Z. Guo, Proteomic analysis of cisplatin-and oxaliplatin-induced phosphorylation in proteins bound to Pt–DNA adducts, Metallomics, 2020, 12, 1834-1840. [Crossref], [Google Scholar], [Publisher]
[28]. H. Choy, C. Park, M. Yao, Current status and future prospects for satraplatin, an oral platinum analogue, Clinical Cancer Research, 2008, 14, 1633-1638. [Crossref], [Google Scholar], [Publisher]
[29]. J. Zhou, Y. Kang, L. Chen, H. Wang, J. Liu, S. Zeng, L. Yu, The drug-resistance mechanisms of five platinum-based antitumor agents, Frontiers in Pharmacology, 2020, 11, 343. [Crossref], [Google Scholar], [Publisher]
[30]. G.F. Weber, G.F. Weber, DNA damaging drugs, Molecular Therapies of Cancer, 2015, 9-112. [Crossref], [Google Scholar], [Publisher]
[31]. R.L. Lucaciu, A.C. Hangan, B. Sevastre, L.S. Oprean, Metallo-drugs in cancer therapy: Past, present and future, Molecules, 2022, 27, 6485. [Crossref], [Google Scholar], [Publisher]
[32]. O. Eje, C. Ogbonna, C. Onoyima, F. Nduka, Huntington disease: Mechanism of pathogenesis and recent developments in its therapeutic strategies-A short review, Journal of Chemical Reviews, 2023, 5, 129-142. [Crossref], [Google Scholar], [Publisher]
[33]. L. Mehrdana, H. Safari, A. Maher, Crisis management in the face of covid-19 to control drug chemistry for cancer patients in different countries: A review study, Journal of Chemical Reviews, 2021, 3, 232-246. [Crossref], [Google Scholar], [Publisher]
[34]. R. Huang, P.K. Zhou, DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy, Signal Transduction and Targeted Therapy, 2021, 6, 254. [Crossref], [Google Scholar], [Publisher]
[35]. J. Bergstrom, M. Kurtz, D. Rew, A. Amend, J. Karkas, R. Bostedor, V. Bansal, C. Dufresne, F. VanMiddlesworth, O. Hensens, Zaragozic acids: A family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase, Proceedings of the National Academy of Sciences, 1993, 90, 80-84. [Crossref], [Google Scholar], [Publisher]
[36]. C.I. Liu, W.Y. Jeng, W.J. Chang, T.P. Ko, A.H.J. Wang, Binding modes of zaragozic acid A to human squalene synthase and staphylococcal dehydrosqualene synthase, Journal of Biological Chemistry, 2012, 287, 18750-18757. [Crossref], [Google Scholar], [Publisher]
[37]. L. Ma, W. Cho, E.R. Nelson, Our evolving understanding of how 27-hydroxycholesterol influences cancer, Biochemical pharmacology, 2022, 196, 114621. [Crossref], [Google Scholar], [Publisher]
[38]. I. Giacomini, F. Gianfanti, M.A. Desbats, G. Orso, M. Berretta, T. Prayer-Galetti, E. Ragazzi, V. Cocetta, Cholesterol metabolic reprogramming in cancer and its pharmacological modulation as therapeutic strategy, Frontiers in Oncology, 2021, 11, 682911. [Crossref], [Google Scholar], [Publisher]
[39]. S. Mukhopadhyay, C.M. Barnés, A. Haskel, S.M. Short, K.R. Barnes, S.J. Lippard, Conjugated platinum (IV)− peptide complexes for targeting angiogenic tumor vasculature, Bioconjugate Chemistry, 2008, 19, 39-49. [Crossref], [Google Scholar], [Publisher]
[40]. M. Xie, D. Liu, Y. Yang, Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification, Open Biology, 2020, 10, 200004. [Crossref], [Google Scholar], [Publisher]
[41]. M. Chehelgerdi, M. Chehelgerdi, O.Q.B. Allela, R.D.C. Pecho, N. Jayasankar, D.P. Rao, T. Thamaraikani, M. Vasanthan, P. Viktor, N. Lakshmaiya, Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation, Molecular Cancer, 2023, 22, 169. [Crossref], [Google Scholar], [Publisher]
[42]. G.J. Yoshida, Metabolic reprogramming: the emerging concept and associated therapeutic strategies, Journal of experimental & clinical cancer research, 2015, 34, 1-10. [Crossref], [Google Scholar], [Publisher]
[43]. E. Bortolamiol, F. Visentin, T. Scattolin, Recent advances in bioconjugated transition metal complexes for cancer therapy, Applied Sciences, 2023, 13, 5561. [Crossref], [Google Scholar], [Publisher]
[44]. S. Norn, H. Permin, E. Kruse, P.R. Kruse, Mercury--a major agent in the history of medicine and alchemy, Dansk Medicinhistorisk Arbog, 2008, 36, 21-40. [Google Scholar], [Publisher]
[45]. S. Waxman, K.C. Anderson, History of the development of arsenic derivatives in cancer therapy, The Oncologist, 2001, 6, 3-10. [Crossref], [Google Scholar], [Publisher]
[46]. S.P. Pricker, Medical uses of gold compounds: Past, present and future, Gold Bulletin, 1996, 29, 53-60. [Google Scholar], [Publisher]
[47]. U. Jungwirth, C.R. Kowol, B.K. Keppler, C.G. Hartinger, W. Berger, P. Heffeter, Anticancer activity of metal complexes: Involvement of redox processes, Antioxidants & Redox Signaling, 2011, 15. [Crossref], [Google Scholar], [Publisher]
[48]. H.F. Ji, X.J. Li, H.Y. Zhang, Natural products and drug discovery: can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia?, EMBO Reports, 2009, 10, 194-200. [Crossref], [Google Scholar], [Publisher]
[49]. M. Frezza, S. Hindo, D. Chen, A. Davenport, S. Schmitt, D. Tomco, Q. Ping Dou, Novel metals and metal complexes as platforms for cancer therapy, Current Pharmaceutical Design, 2010, 16, 1813-1825. [Crossref], [Google Scholar], [Publisher]
[50]. P.C. Bruijnincx, P.J. Sadler, New trends for metal complexes with anticancer activity, Current Opinion in Chemical Biology, 2008, 12, 197-206. [Crossref], [Google Scholar], [Publisher]
[51]. V. Mourino, J.P. Cattalini, A.R. Boccaccini, Metallic ions as therapeutic agents in tissue engineering scaffolds: An overview of their biological applications and strategies for new developments, Journal of the Royal Society Interface, 2012, 9, 401-419. [Crossref], [Google Scholar], [Publisher]
[52]. B.T. Benedetti, E.J. Peterson, P. Kabolizadeh, A. Martínez, R. Kipping, N.P. Farrell, Effects of noncovalent platinum drug–protein interactions on drug efficacy: Use of fluorescent conjugates as probes for drug metabolism, Molecular Pharmaceutics, 2011, 8, 940-948. [Crossref], [Google Scholar], [Publisher]
[53]. V. Milacic, D. Fregona, Q.P. Dou, Gold complexes as prospective metal-based anticancer drugs, Histology and Histopathology, 2008. [Google Scholar], [Publisher]
[54]. L. Zhong, Y. Li, L. Xiong, W. Wang, M. Wu, T. Yuan, W. Yang, C. Tian, Z. Miao, T. Wang, Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives, Signal Transduction and Targeted Therapy, 2021, 6, 201. [Crossref], [Google Scholar], [Publisher]
[55]. E.L. Lieu, T. Nguyen, S. Rhyne, J. Kim, Amino acids in cancer, Experimental & Molecular Medicine, 2020, 52, 15-30. [Crossref], [Google Scholar], [Publisher]
[56]. M.J. Lukey, W.P. Katt, R.A. Cerione, Targeting amino acid metabolism for cancer therapy, Drug Discovery Today, 2017, 22, 796-804. [Crossref], [Google Scholar], [Publisher]
[57]. J.H. Kim, E. Reeder, S. Parkin, S.G. Awuah, Gold (I/III)-phosphine complexes as potent antiproliferative agents, Scientific Reports, 2019, 9, 12335. [Crossref], [Google Scholar], [Publisher]
[58]. J. Verma, C. Warsame, R.K. Seenivasagam, N.K. Katiyar, E. Aleem, S. Goel, Nanoparticle-mediated cancer cell therapy: Basic science to clinical applications, Cancer and Metastasis Reviews, 2023, 1-27. [Crossref], [Google Scholar], [Publisher]
[59]. J.L. Cooper, P. Robinson, The argument for making large classes seem small, New Directions for Teaching and Learning, 2000, 2000, 5-16. [Crossref], [Google Scholar], [Publisher]
[60]. R.K. Jain, T. Stylianopoulos, Delivering nanomedicine to solid tumors, Nature Reviews Clinical Oncology, 2010, 7, 653-664. [Crossref], [Google Scholar], [Publisher]
[61]. C.M.J. Hu, L. Zhang, Therapeutic nanoparticles to combat cancer drug resistance, Current Drug Metabolism, 2009, 10, 836-841. [Crossref], [Google Scholar], [Publisher]
[62]. D. Peer, J.M. KarP, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy, Nature Nanotechnology, 2007, 2, 755. [Crossref], [Google Scholar], [Publisher]
[63]. C. Naud, C. Thébault, M. Carrière, Y. Hou, R. Morel, F. Berger, B. Diény, H. Joisten, Cancer treatment by magneto-mechanical effect of particles, a review, Nanoscale Advances, 2020, 2, 3632-3655. [Crossref], [Google Scholar], [Publisher]
[64]. C.J. Murphy, A.M. Vartanian, F.M. Geiger, R.J. Hamers, J. Pedersen, Q. Cui, C.L. Haynes, E.E. Carlson, R. Hernandez, R.D. Klaper, Biological responses to engineered nanomaterials: Needs for the next decade, ACS Central Science, 2015, 1, 117-123. [Crossref], [Google Scholar], [Publisher]
[65]. A.D. Morton, Waiting for gramsci: State formation, passive revolution and the international, Millennium, 2007, 35, 597-621. [Crossref], [Google Scholar], [Publisher]
[66]. A. Ghossain, M.A. Ghossain, History of mastectomy before and after Halsted, Le Journal medical libanais. The Lebanese Medical Journal, 2009, 57, 65-71. [Google Scholar], [Publisher]
[67]. R. Sankaranarayanan, K. Ramadas, S. Thara, R. Muwonge, G. Thomas, G. Anju, B. Mathew, Long term effect of visual screening on oral cancer incidence and mortality in a randomized trial in Kerala, India, Oral Oncology, 2013, 49, 314-321. [Crossref], [Google Scholar], [Publisher]
[68]. K. Wang, J.E. Tepper, Radiation therapy‐associated toxicity: Etiology, management, and prevention, CA: A Cancer Journal for Clinicians, 2021, 71, 437-454. [Crossref], [Google Scholar], [Publisher]
[69]. S.M. Bird, The 1959 meeting in Vienna on controlled clinical trials–A methodological landmark, Journal of the Royal Society of Medicine, 2015, 108, 372-375. [Crossref], [Google Scholar], [Publisher]
[70]. B. Cho, Intensity-modulated radiation therapy: a review with a physics perspective, Radiation Oncology Journal, 2018, 36, 1. [Crossref], [Google Scholar], [Publisher]
[71]. L.S. Goodman, M.M. Wintrobe, W. Dameshek, M.J. Goodman, A. Gilman, M.T. McLennan, Nitrogen mustard therapy: Use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders, Journal of the American Medical Association, 1946, 132, 126-132. [Crossref], [Google Scholar], [Publisher]
[72]. H.S. Oberoi, N.V. Nukolova, A.V. Kabanov, T.K. Bronich, Nanocarriers for delivery of platinum anticancer drugs, Advanced Drug Delivery Reviews, 2013, 65, 1667-1685. [Crossref], [Google Scholar], [Publisher]
[73]. T.C. Johnstone, G.Y. Park, S.J. Lippard, Understanding and improving platinum anticancer drugs–phenanthriplatin, Anticancer Research, 2014, 34, 471-476. [Google Scholar], [Publisher]
[74]. P. Krzyszczyk, A. Acevedo, E.J. Davidoff, L.M. Timmins, I. Marrero-Berrios, M. Patel, C. White, C. Lowe, J.J. Sherba, C. Hartmanshenn, The growing role of precision and personalized medicine for cancer treatment, Technology, 2018, 6, 79-100. [Crossref], [Google Scholar], [Publisher]
[75]. T.C. Johnstone, K. Suntharalingam, S.J. Lippard, The next generation of platinum drugs: targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs, Chemical Reviews, 2016, 116, 3436-3486. [Crossref], [Google Scholar], [Publisher]
[76]. G. Rezanejade Bardajee, S. Ghavami, S.S. Hosseini, A review on pH and temperature responsive gels in drug delivery, Journal of Chemical Reviews, 2020, 2, 80-89. [Crossref], [Google Scholar], [Publisher]
[77]. I.W. Achkar, N. Abdulrahman, H. Al-Sulaiti, J.M. Joseph, S. Uddin, F. Mraiche, Cisplatin based therapy: the role of the mitogen activated protein kinase signaling pathway, Journal of Translational Medicine, 2018, 16, 1-12. [Crossref], [Google Scholar], [Publisher]
[78]. S. Dilruba, G.V. Kalayda, Platinum-based drugs: past, present and future, Cancer Chemotherapy and Pharmacology, 2016, 77, 1103-1124. [Crossref], [Google Scholar], [Publisher]
[79]. S. Zhu, N. Pabla, C. Tang, L. He, Z. Dong, DNA damage response in cisplatin-induced nephrotoxicity, Archives of Toxicology, 2015, 89, 2197-2205. [Crossref], [Google Scholar], [Publisher]
[80]. A. Brown, S. Kumar, P.B. Tchounwou, Cisplatin-based chemotherapy of human cancers, Journal of Cancer Science & Therapy, 2019, 11. [Google Scholar], [Publisher]
[81]. M.-P. Mingeot-Leclercq, P.M. Tulkens, Aminoglycosides: Nephrotoxicity, Antimicrobial Agents and Chemotherapy, 1999, 43, 1003-1012. [Crossref], [Google Scholar], [Publisher]
[82]. J. Małyszko, K. Kozłowska, L. Kozłowski, J. Małyszko, Nephrotoxicity of anticancer treatment, Nephrology Dialysis Transplantation, 2017, 32, 924-936. [Crossref], [Google Scholar], [Publisher]
[83]. S. Schoch, S. Gajewski, J. Rothfuß, A. Hartwig, B. Köberle, Comparative study of the mode of action of clinically approved platinum-based chemotherapeutics, International Journal of Molecular Sciences, 2020, 21, 6928. [Crossref], [Google Scholar], [Publisher]
[84]. B. Mansoori, A. Mohammadi, S. Davudian, S. Shirjang, B. Baradaran, The different mechanisms of cancer drug resistance: a brief review, Advanced Pharmaceutical Bulletin, 2017, 7, 339. [Crossref], [Google Scholar], [Publisher]
[85]. G. Fang, A. Zhang, L. Zhu, Q. Wang, F. Sun, B. Tang, Nanocarriers containing platinum compounds for combination chemotherapy, Frontiers in Pharmacology, 2022, 13, 1050928. [Crossref], [Google Scholar], [Publisher]
[86]. F. De Castro, E. Stefàno, E. De Luca, M. Benedetti, F.P. Fanizzi, Platinum-nucleos (t) ide compounds as possible antimetabolites for antitumor/antiviral therapy: Properties and perspectives, Pharmaceutics, 2023, 15, 941. [Crossref], [Google Scholar], [Publisher]
[87]. R. Singh, J.W. Lillard Jr, Nanoparticle-based targeted drug delivery, Experimental and Molecular Pathology, 2009, 86, 215-223. [Crossref], [Google Scholar], [Publisher]
[88]. S.R. McWhinney, R.M. Goldberg, H.L. McLeod, Platinum neurotoxicity pharmacogenetics, Molecular Cancer Therapeutics, 2009, 8, 10-16. [Crossref], [Google Scholar], [Publisher]
[89]. I. Predarska, M. Saoud, I. Morgan, P. Lönnecke, G.N. Kaluđerović, E. Hey-Hawkins, Triphenyltin (IV) carboxylates with exceptionally high cytotoxicity against different breast cancer cell lines, Biomolecules, 2023, 13, 595. [Crossref], [Google Scholar], [Publisher]
[90]. T.Y. Seiwert, J.K. Salama, E.E. Vokes, The chemoradiation paradigm in head and neck cancer, Nature Clinical Practice Oncology, 2007, 4, 156-171. [Crossref], [Google Scholar], [Publisher]
[91]. A. Ardizzoni, L. Boni, M. Tiseo, F.V. Fossella, J.H. Schiller, M. Paesmans, D. Radosavljevic, A. Paccagnella, P. Zatloukal, P. Mazzanti, Cisplatin-versus carboplatin-based chemotherapy in first-line treatment of advanced non–small-cell lung cancer: an individual patient data meta-analysis, Journal of the National Cancer Institute, 2007, 99, 847-857. [Crossref], [Google Scholar], [Publisher]
[92]. L. Hess, M. Benham-Hutchins, T. Herzog, C.-H. Hsu, D. Malone, G. Skrepnek, M. Slack, D. Alberts, A meta-analysis of the efficacy of intraperitoneal cisplatin for the front-line treatment of ovarian cancer, International Journal of Gynecologic Cancer, 2007, 17. [Crossref], [Google Scholar], [Publisher]
[93]. Z.N. Lei, Q. Tian, Q.X. Teng, J.N. Wurpel, L. Zeng, Y. Pan, Z.S. Chen, Understanding and targeting resistance mechanisms in cancer, MedComm, 2023, 4, e265. [Crossref], [Google Scholar], [Publisher]
[94]. E.L. Sauers, T.C.V. McLeod, R.C. Bay, Practice-based research networks, part I: clinical laboratories to generate and translate research findings into effective patient care, Journal of Athletic Training, 2012, 47, 549-556. [Crossref], [Google Scholar], [Publisher]
[95]. W.M. Tierney, C.C. Oppenheimer, B.L. Hudson, J. Benz, A. Finn, J.M. Hickner, D. Lanier, D.S. Gaylin, A national survey of primary care practice-based research networks, The Annals of Family Medicine, 2007, 5, 242-250. [Crossref], [Google Scholar], [Publisher]
[96]. D.S. Kadam, S.G. Patil, D. Mammen, S.D. Kadam, V.S. More, In silico molecular docking againstc-KIT tyrosine kinase and ADME studies of 4-thiazolidinone derivatives, Journal of Appllied Organometallic Chemistry, 2023, 3, 13-27. [Crossref], [Publisher]
[97]. M.B. Swami, G.R. Nagargoje, S.R. Mathapati, A.S. Bondge, A.H. Jadhav, S.P. Panchgalle, V.S. More, A magnetically recoverable and highly effectual Fe3O4 encapsulated MWCNTs nanocomposite for synthesis of 1,8-dioxo-octahydroxanthene derivatives, Journal of Appllied Organometallic Chemistry, 2023, 3, 184-198. [Crossref], [Google Scholar], [Publisher]
[98]. G.R. Nagargoje, A.S. Bondge, P.D. Kadam, K.I. Momin, S.B. Zangade, D.D. Kadam, S.P. Panchgalle, V.S. More. Quantification of Langlois Reagent by 19F-NMR Spectroscopy, Journal of Appllied Organometallic Chemistry, 2023, 3, 213-223. [Crossref], [Publisher]
[99]. A. Lande, B. Kolapwar, P. Bhujbal, K. Karamunge, V. More, Preparation, characterization, and biological relevaance of Co, Ni, and Zn complexes derived from 6, 6'-((1E, 1'E)-((1, 3-phenylenebis (methylene)) bis (azanylylidene)) bis (methanylyidene))-bis (2, 4-dibromophenol), Rasayan Journal of Chemistry, 2023, 16, 1063-1068. [Crossref], [Google Scholar], [Publisher]