مقایسه‌ی ‌اثر تمرینات تناوبی با شدت بالا و تمرینات تداومی با شدت متوسط بر ترکیب بدن در بزرگسالان دارای اضافه وزن و چاق: مرور نظام‌مند و فراتحیل

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار، گروه تربیت بدنی و علوم ورزشی، دانشکده‌ی علوم انسانی، دانشگاه کاشان، کاشان، ایران

2 دانشجوی کارشناسی ارشد، گروه تربیت بدنی و علوم ورزشی، دانشکده‌ی علوم انسانی، دانشگاه کاشان، کاشان، ایران

چکیده

مقاله مروری




مقدمه: هدف از مطالعه‌ی حاضر، مقایسه‌ی اثر تمرینات تناوبی با شدت بالا (High-intensity interval training) HIIT و تمرینات تداومی با شدت متوسط
(Moderate-intensity continuous training) MICT بر ترکیب بدن در بزرگسالان دارای اضافه وزن و چاق بود.
روش‌ها: جستجوی سیستماتیک مقالات انگلیسی و فارسی منتشر شده از پایگاه‌های اطلاعاتی PubMed، Web of Science، SID و Magiran تا نوامبر سال 2022 انجام شد. فراتحلیل برای مقایسه‌ی اثر HIIT و MICT بر ترکیب بدن در بزرگسالان دارای اضافه وزن و چاق انجام شد. تفاوت میانگین وزنی (Weighted mean difference) WMD و فاصله‌ی اطمینان 95 درصد (CI) با استفاده از مدل اثر ثابت محاسبه شد. همچنین، جهت تعیین ناهمگونی از آزمون I2 و برای سوگیری انتشار از آزمون فونل پلات و تست Egger استفاده شد.
یافته‌ها: نتایج 36 مطالعه با 1096 آزمودنی نشان داد که HIIT سبب تغییر معنی‌دار وزن بدن ]0/3 = P، (0/47- الی 1/23) 0/37 = WMD]، درصد چربی بدن
]0/2 = =، (0/19- الی 0/83) 0/31 = WMD] و توده‌ی چربی بدن ]0/2 = P، (1/12- الی 0/24) 0/43- = WMD] نسبت به MICT در بزرگسالان دارای اضافه وزن و چاق نمی‌شود. اما HIIT سبب افزایش معنی‌دار توده‌ی عضلانی بدن ]0/03 = P، (0/07 الی 1/58) 0/82 = WMD] نسبت به MICT در بزرگسالان دارای اضافه وزن و چاق می‌شود.
نتیجه‌گیری: نتایج مطالعه‌ی حاضر نشان داد که HIIT فواید مشابهی با MICT بر ترکیب بدن دارد، اگرچه HIIT یک روش تمرینی با زمان کارآمد است. با این حال، هیچ کدام از HIIT و MICT کوتاه‌مدت سبب کاهش معنی‌دار بالینی بر چربی بدن نمی‌شود. HIIT در مقایسه با MICT منجر به افزایش توده‌ی عضلانی بدن در بزرگسالان چاق می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparing the Effects of High-Intensity Interval Training and Moderate-Intensity Continuous Training on Body Composition in Adults with Overweight and Obese: A Systematic Review and Meta-Analysis

نویسندگان [English]

  • Fatemeh Kazeminasab 1
  • Fatemeh Sharafifard 2
  • Motahareh Mohebinejad 2
1 Assistant Professor, Department of Physical Education and Sport Sciences, School of Humanities, University of Kashan, Kashan, Iran
2 MSc Student, Department of Physical Education and Sport Sciences, School of Humanities, University of Kashan, Kashan, Iran
چکیده [English]

Background: The aim of this study is to compare the effect of high intensity interval training (HIIT) and moderate intensity continuous training (MICT) on body composition in overweight and obese adults.
Methods: A systematic search of English and Persian articles published in PubMed, Web of Science, SID, and Magiran databases was conducted up to November 2022. A meta-analysis was performed to compare the effect of HIIT and MICT on body composition in overweight and obese adults. Weighted mean difference (WMD) and 95% confidence interval (CI) were calculated using fixed effect model.  Also, I2 test was used to determine heterogeneity, and Funnel plot test and Egger test were used for publication bias.
Findings: The results of 36 studies with 1096 subjects showed that HIIT did not significantly change in body weight [WMD = 0.37, (-1.12 to 0.24), P = 0.3], body fat percentage [WMD = 0.31 (-0.19 to 0.83), P = 0.2], and body fat mass [WMD = -0.43 (-1.12 to 0.24), P = 0.2], compared to MICT in overweight and obese adults .But HIIT causes a significant increase in body free fat mass [WMD = 0.82 (0.07 to 1.58), P = 0.03], compared to MICT in overweight and obese adults .
Conclusion: The results of the present study show that HIIT has similar benefits to MICT on body composition, and body fat reduction, although HIIT is a time-efficient training method.  However, neither short-term HIIT nor MICT leads to a clinically significant reduction in body fat. HIIT leads to an increase in body free fat mass in obese adults compared to MICT.

کلیدواژه‌ها [English]

  • High-intensity interval training
  • Adipocytes
  • Adult
  • Obesity
  1. Maillard F, Pereira B, Boisseau N. Effect of high-intensity interval training on total, abdominal and visceral fat mass: a meta-analysis. Sports Med 2018; 48(2): 269-88.
  2. Vaccari F, Passaro A, D’Amuri A, Sanz JM, Di Vece F, Capatti E, et al. Effects of 3-month high-intensity interval training vs. moderate endurance training and 4-month follow-up on fat metabolism, cardiorespiratory function and mitochondrial respiration in obese adults. Eur J Appl Physiol 2020; 120(8): 1787-803.
  3. Dupuit M, Maillard F, Pereira B, Marquezi ML, Lancha Jr AH, Boisseau N. Effect of high intensity interval training on body composition in women before and after menopause: a meta‐ Exp Physiol 2020; 105(9): 1470-90.
  4. Lee HS, Lee J. Effects of exercise interventions on weight, body mass index, lean body mass and accumulated visceral fat in overweight and obese individuals: A systematic review and meta-analysis of randomized controlled trials. Int J Environ Res Public Health 2021; 18(5): 2635.
  5. Poon ETC, Little JP, Sit CHP, Wong SHS. The effect of low-volume high-intensity interval training on cardiometabolic health and psychological responses in overweight/obese middle-aged men. J Sports Sci 2020; 38(17): 1997-2004.
  6. Zhang H, Tong TK, Qiu W, Wang J, Nie J, He Y. Effect of high-intensity interval training protocol on abdominal fat reduction in overweight Chinese women: a randomized controlled trial. Kinesiology 2015; 47(1): 57-66.
  7. Wewege M, van Den Berg R, Ward RE, Keech A. The effects of high‐intensity interval training vs. moderate‐intensity continuous training on body composition in overweight and obese adults: a systematic review and meta‐ Obes Rev 2017; 18(6): 635-46.
  8. Keating SE, Johnson NA, Mielke GI, Coombes JS. A systematic review and meta‐analysis of interval training versus moderate‐intensity continuous training on body adiposity. Obes Rev 2017; 18(8): 943-64.
  9. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, MacDonald MJ, McGee SL, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 2008; 586(1): 151-60.
  10. Trapp EG, Chisholm DJ, Freund J, Boutcher SH. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int J Obes (Lond) 2008; 32(4): 684-91.
  11. Nybo L, Sundstrup E, Jakobsen MD, Mohr M, Hornstrup T, Simonsen L, et al. High-intensity training versus traditional exercise interventions for promoting health. Med Sci Sports Exerc 2010; 42(10): 1951-8.
  12. Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low‐volume high‐intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol 2010; 588(Pt 6): 1011-22.
  13. Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc 2011; 43(10): 1849-56.
  14. Whyte LJ, Gill JMR, Cathcart AJ. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism 2010; 59(10): 1421-8.
  15. Richards JC, Johnson TK, Kuzma JN, Lonac MC, Schweder MM, Voyles WF, et al. Short‐term sprint interval training increases insulin sensitivity in healthy adults but does not affect the thermogenic response to β‐adrenergic stimulation. J Physiol 2010; 588(15): 2961-72.
  16. Little JP, Gillen JB, Percival ME, Safdar A, Tarnopolsky MA, Punthakee Z, et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol (1985) 2011; 111(6): 1554-60.
  17. Boudou P, Sobngwi E, Mauvais-Jarvis F, Vexiau P, Gautier JF. Absence of exercise-induced variations in adiponectin levels despite decreased abdominal adiposity and improved insulin sensitivity in type 2 diabetic men. Eur J Endocrinol 2003; 149(5): 421-4.
  18. Tjønna AE, Lee SJ, Rognmo Ø, Stølen TO, Bye A, Haram PM, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 2008; 118(4): 346-54.
  19. Dias KA, Coombes JS, Green DJ, Gomersall SR, Keating SE, Tjonna AE, et al. Effects of exercise intensity and nutrition advice on myocardial function in obese children and adolescents: a multicentre randomised controlled trial study protocol. BMJ Open 2016; 6(4): e010929.
  20. Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med 2014; 48(16): 1227-34.
  21. Lambrick D, Westrupp N, Kaufmann S, Stoner L, Faulkner J. The effectiveness of a high-intensity games intervention on improving indices of health in young children. J Sports Sci 2016; 34(3): 190-8.
  22. Costigan SA, Eather N, Plotnikoff RC, Taaffe DR, Lubans DR. High-intensity interval training for improving health-related fitness in adolescents: a systematic review and meta-analysis. Br J Sports Med 2015; 49(19): 1253-61.
  23. Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med 2015; 45(5): 679-92.
  24. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014; 14: 135.
  25. Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions. Hoboken, New Jersey: John Wiley & Sons; 2019.
  26. Kazeminasab F, Baharlooie M, Khalafi M. The impact of exercise on serum levels of leptin and adiponectin in obese children and adolescents: A systematic review and meta-analysis [in Persian]. Iran J Endocrinol Metab 2022; 23(6): 409-25.
  27. De Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother 2009; 55(2): 129-33.
  28. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327(7414): 557-60.
  29. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315(7109): 629-34.
  30. Romero-Corral A, Somers VK, Sierra-Johnson J, Thomas RJ, Collazo-Clavell M, Korinek J, et al. Accuracy of body mass index in diagnosing obesity in the adult general population. Int J Obes (Lond) 2008; 32(6): 959-66.
  31. Elmer DJ, Laird RH, Barberio MD, Pascoe DD. Inflammatory, lipid, and body composition responses to interval training or moderate aerobic training. Eur J Appl Physiol 2016; 116(3): 601-9.
  32. Shepherd SO, Wilson OJ, Taylor AS, Thøgersen-Ntoumani C, Adlan AM, Wagenmakers AJ, et al. Low-Volume High-Intensity Interval Training in a Gym Setting Improves Cardio-Metabolic and Psychological Health. PLoS One 2015; 10(9): e0139056.
  33. Jelleyman C, Yates T, O'Donovan G, Gray LJ, King
    JA, Khunti K, et al. The effects of high‐intensity interval training on glucose regulation and insulin resistance: a meta‐ Obes Rev 2015; 16(11): 942-61.
  34. Molmen-Hansen HE, Stolen T, Tjonna AE, Aamot IL, Ekeberg IS, Tyldum GA, et al. Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur J Prev Cardiol 2012; 19(2): 151-60.
  35. Guiraud T, Nigam A, Gremeaux V, Meyer P, Juneau M, Bosquet L. High-intensity interval training in cardiac rehabilitation. Sports Med 2012; 42(7): 587-605.
  36. Boutcher SH. High-intensity intermittent exercise and fat loss. J Obes 2011; 2011: 868305.
  37. Trapp EG, Chisholm DJ, Boutcher SH. Metabolic response of trained and untrained women during high-intensity intermittent cycle exercise. Am J Physiol Regul Integr Comp Physiol 2007; 293(6): R2370-5.
  38. Mora-Rodriguez R, Coyle EF. Effects of plasma epinephrine on fat metabolism during exercise: interactions with exercise intensity. Am J Physiol Endocrinol Metab 2000; 278(4): E669-76.
  39. Pritzlaff CJ, Wideman L, Blumer J, Jensen M, Abbott RD, Gaesser GA, et al. Catecholamine release, growth hormone secretion, and energy expenditure during exercise vs. recovery in men. Journal of Applied Physiology. 2000;89(3):937-46.
  40. Gore CJ, Withers RT. The effect of exercise intensity and duration on the oxygen deficit and excess post-exercise oxygen consumption. Eur J Appl Physiol Occup Physiol 1990; 60(3): 169-74.
  41. Yoshioka M, Doucet E, St-Pierre S, Almeras N, Richard D, Labrie A, et al. Impact of high-intensity exercise on energy expenditure, lipid oxidation and body fatness. Int J Obes Relat Metab Disord 2001; 25(3): 332-9.
  42. Tucker WJ, Angadi SS, Gaesser GA. Excess postexercise oxygen consumption after high-intensity and sprint interval exercise, and continuous steady-state exercise. J Strength Cond Res 2016; 30(11): 3090-7.
  43. Galedari M, Banaei A. The effect of 12 weeks of aerobic training at fatmax intensity and calorie restriction on plasma apelin 36 levels and insulin resistance in overweight men [in Persian]. Sport Physiol 2016; 8(32): 153-68.
  44. Avandi SM, Ebrahim K, Salimi A, Hedayati M, Ghasemi M. Comparison the effect of six weeks high intensity interval training and moderate continuous training on body fat percentage and body mass index in overweight men. Proceeding of the International Shomal sports science; [Dec 2012]; Iran, Amol: Shomal University.
  45. Nikroo H. The comparison of effects of aerobic interval and continuous training program on maximal oxygen consumption, body mass index, and body fat percentage in officer students [in Persian]. J Mil Med 2014; 15(4): 245-51.
  46. Ram A, Marcos L, Jones MD, Morey R, Hakansson S, Clark T, et al. The effect of high-intensity interval training and moderate-intensity continuous training on aerobic fitness and body composition in males with overweight or obesity: A randomized trial. Obes Med 2020; 17: 100187.
  47. Sultana RN, Sabag A, Keating SE, Johnson NA. The effect of low-volume high-intensity interval training on body composition and cardiorespiratory fitness: a systematic review and meta-analysis. Sports Med 2019; 49(11): 1687-721.
  48. Gibala MJ, Little JP, Van Essen M, Wilkin GP, Burgomaster KA, Safdar A, et al. Short‐term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 2006; 575(3): 901-11.
  49. Sheikholeslami-vatani D, Ebrahimi A. The effect of moderate-intensity continuous training Vs. high-intensity interval training on visceral and subcutaneous fats in obese women [in Persian]. J Rafsanjan Univ Med Sci 2018; 16(11): 999-1012.
  50. D’Amuri A, Raparelli V, Sanz JM, Capatti E, Di Vece F, Vaccari F, et al. Biological response of irisin induced by different types of exercise in obese subjects: A non-inferiority controlled randomized study. Biology (Basel) 2022; 11(3): 392.
  51. Ahn C, Ryan BJ, Schleh MW, Varshney P, Ludzki AC, Gillen JB, et al. Exercise training remodels subcutaneous adipose tissue in adults with obesity even without weight loss. J Physiol 2022; 600(9): 2127-46.
  52. Shi W, Chen J, He Y, Su P, Wang M, Li X, et al. The effects of high-intensity interval training and moderate-intensity continuous training on visceral fat and carotid hemodynamics parameters in obese adults. J Exerc Sci Fit 2022; 20(4): 355-65.
  53. Amorim Oliveira GT, Elsangedy HM, Pereira DC, de Melo Silva R, Campos Faro HK, Bortolotti H, et al. Effects of 12 weeks of high-intensity interval, moderate-intensity continuous and self-selected intensity exercise training protocols on cognitive inhibitory control in overweight/obese adults: A randomized trial. Eur J Sport Sci 2022; 22(11): 1724-33.
  54. Beer NJ, Jackson B, Dimmock JA, Guelfi KJ. Attenuation of post-exercise energy intake following 12 weeks of sprint interval training in men and women with overweight. Nutrients 2022; 14(7): 1362.
  55. Saeidi A, Shishvan SR, Soltani M, Tarazi F, Doyle-Baker PK, Shahrbanian S, et al. Differential effects of exercise programs on neuregulin 4, body composition and cardiometabolic risk factors in men with obesity. Front Physiol 2022; 12: 797574.
  56. D'Amuri A, Sanz JM, Capatti E, Di Vece F, Vaccari F, Lazzer S, et al. Effectiveness of high-intensity interval training for weight loss in adults with obesity: A randomised controlled non-inferiority trial. BMJ Open Sport Exerc Med 2021; 7(3): e001021.
  57. Petrick HL, King TJ, Pignanelli C, Vanderlinde TE, Cohen JN, Holloway GP, et al. Endurance and sprint training improve glycemia and V˙O2peakbut only frequent endurance benefits blood pressure and lipidemia. Med Sci Sports Exerc 2021; 53(6): 1194-205.
  58. Hu M, Kong Z, Sun S, Zou L, Shi Q, Chow BC, et al. Interval training causes the same exercise enjoyment as moderate-intensity training to improve cardiorespiratory fitness and body composition in young Chinese women with elevated BMI. J Sports Sci 2021; 39(15): 1677-86.
  59. Zhang H, Tong TK, Kong Z, Shi Q, Liu Y, Nie J. Exercise training-induced visceral fat loss in obese women: The role of training intensity and modality. Scand J Med Sci Sports 2021; 31(1): 30-43.
  60. Poon ETC, Little JP, Sit CHP, Wong SHS. The effect of low-volume high-intensity interval training on cardiometabolic health and psychological responses in overweight/obese middle-aged men. J Sports Sci 2020; 38(17): 1997-2004.
  61. Zapata-Lamana R, Henríquez-Olguín C, Burgos C, Meneses-Valdés R, Cigarroa I, Soto C, et al. Effects of polarized training on cardiometabolic risk factors in young overweight and obese women: A randomized-controlled trial. Front Physiol 2018; 9: 1287.
  62. Barry JC, Simtchouk S, Durrer C, Jung ME, Little JP. Short-term exercise training alters leukocyte chemokine receptors in obese adults. Med Sci Sports Exerc 2017; 49(8): 1631-40.
  63. Bartlett DB, Shepherd SO, Wilson OJ, Adlan AM, Wagenmakers AJM, Shaw CS, et al. Neutrophil and monocyte bactericidal responses to 10 weeks of low-volume high-intensity interval or moderate-intensity continuous training in sedentary adults. Oxid Med Cell Longev 2017; 2017: 8148742.
  64. Kong Z, Sun S, Liu M, Shi Q. Short-term high-intensity interval training on body composition and blood glucose in overweight and obese young women. J Diabetes Res 2016; 2016.
  65. Cooper JHF, Collins BEG, Adams DR, Robergs RA, Donges CE. Limited effects of endurance or interval training on visceral adipose tissue and systemic inflammation in sedentary middle-aged men. J Obes 2016; 2016: 2479597.
  66. Shepherd SO, Wilson OJ, Taylor AS, Thøgersen-Ntoumani C, Adlan AM, Wagenmakers AJM, et al. Low-volume high-intensity interval training in a gym setting improves cardio-metabolic and psychological health. PLoS One 2015; 10(9): e0139056.
  67. Keating SE, Machan EA, O'Connor HT, Gerofi JA, Sainsbury A, Caterson ID, et al. Continuous exercise but not high intensity interval training improves fat distribution in overweight adults. J Obes 2014; 2014: 834865.
  68. Schjerve IE, Tyldum GA, Tjønna AE, Stølen T, Loennechen JP, Hansen HEM, et al. Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clin Sci (Lond) 2008; 115(9): 283-93.
  69. Moreira MM, De Souza HPC, Schwingel PA, De Sá CKC, Zoppi CC. Effects of aerobic and anaerobic exercise on cardiac risk variables in overweight adults. Arq Bras Cardiol 2008; 91(4): 219-26.
  70. Chin EC, Yu AP, Lai CW, Fong DY, Chan DK, Wong SH, et al. Low-frequency HIIT Improves body composition and aerobic capacity in overweight men. Med Sci Sports Exerc 2020; 52(1): 56-66.
  71. Vaccari F, Passaro A, D'Amuri A, Sanz JM, Di Vece F, Capatti E, et al. Effects of 3-month high-intensity interval training vs. moderate endurance training and 4-month follow-up on fat metabolism, cardiorespiratory function and mitochondrial respiration in obese adults. Eur J Appl Physiol 2020; 120(8): 1787-803.
  72. Tucker WJ, Jarrett CL, D'Lugos AC, Angadi SS, Gaesser GA. Effects of indulgent food snacking, with and without exercise training, on body weight, fat mass, and cardiometabolic risk markers in overweight and obese men. Physiol Rep 2021; 9(22): e15118.
  73. Ahmadi Fatemeh MA, Reza Meshakati. Evaluation of blood lipid-biochemical profile and body fat distribution changes in overweight inactive men following continuous aerobic and high intensity interval trainings protocols [in Persian]. J Appl Exerc Physiol 2016; 12(23): 123-40.
  74. Eimarieskandari R, Zilaeibouri S, Zilaeibouri M, Ahangarpour A. Comparing two modes of exercise training with different intensity on body composition in obese young girls. Sci Mov Health 2012; 12(2): 473-8.
  75. Fisher G, Brown AW, Bohan Brown MM, Alcorn A, Noles C, Winwood L, et al. High intensity interval-vs moderate intensity-training for improving cardiometabolic health in overweight or obese males: a randomized controlled trial. PloS One 2015; 10(10): e0138853.
  76. Gillen JB, Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ. Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment. PloS One 2016; 11(4): e0154075.
  77. Sawyer BJ, Tucker WJ, Bhammar DM, Ryder JR, Sweazea KL, Gaesser GA. Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. J Appl Physiol (1985) 2016; 121(1): 279-88.
  78. Sim AY, Wallman KE, Fairchild TJ, Guelfi KJ. Effects of high-intensity intermittent exercise training on appetite regulation. Med Sci Sports Exerc 2015; 47(11): 2441-9.
  79. Higgins S, Fedewa MV, Hathaway ED, Schmidt MD, Evans EM. Sprint interval and moderate-intensity cycling training differentially affect adiposity and aerobic capacity in overweight young-adult women. Appl Physiol Nutr Metab 2016; 41(11): 1177-83.
  80. Ahmadizad S, Avansar AS, Ebrahim K, Avandi M, Ghasemikaram M. The effects of short-term high-intensity interval training vs. moderate-intensity continuous training on plasma levels of nesfatin-1 and inflammatory markers. Horm Mol Biol Clin Investig 2015; 21(3): 165-73.
  81. Cocks M, Shaw CS, Shepherd SO, Fisher JP, Ranasinghe A, Barker TA, et al. Sprint interval and moderate‐intensity continuous training have equal benefits on aerobic capacity, insulin sensitivity, muscle capillarisation and endothelial eNOS/NAD (P) Hoxidase protein ratio in obese men. J Physiol 2016; 594(8): 2307-21.