Research Article
BibTex RIS Cite

Adsorptive Desulfurization of Crude Oil with Expanded Perlite

Year 2022, Volume: 9 Issue: 2, 175 - 183, 31.12.2022
https://doi.org/10.48138/cjo.1206761

Abstract

Crude oil; is a fossil energy source that has become possible to be used by refining processes and has a critical importance for the welfare, economic development, and quality of life of the society. As a result of the use of fossil fuels, carbon dioxide (CO2), sulfur oxide (SOx), and other greenhouse gases are released and these gases are expressed as the main cause of global climate change. For this reason, scientists are making an intense effort to minimize the harmful effects of SOx gases released as a result of combustion reactions in crude oil.
In this presented study; the sulfur content of crude oil has been tried to be reduced by an adsorptive desulfurization technique by using expanded perlite, which is a volcanic rock type and expands as a result of heating and takes on a porous structure. For this purpose, 50 mL samples of crude oil were treated separately with 2, 4, 6, 8, and 10 g of expanded perlite and then exposed to an adsorptive desulfurization process by mixing with a magnetic stirrer at 400 rpm for an hour at room temperature. Then, it was separated from the adsorbent with the help of a centrifuge and the amount of sulfur was determined by the LECO 628S device according to ASTM D 1552-03 method.
As a result of the study, it was determined that the amount of sulfur in crude oil decreased by 10.82 %. The study's findings showed that the expanded crude perlite had a good capacity for sulfide loading, was renewably good, and had a stable structure for removing sulfur compounds.

References

  • Abd Al-Khodor, Y. A., & Albayati, T. M. (2020). Adsorption desulfurization of actual heavy crude oil using activatedcarbon. Eng. and Tech. J, 38, 1441-1453.
  • Ahmad, W., Ahmad, I., Ishaq, M., & Ihsan, K. (2017). Adsorptive desulfurization of kerosene and diesel oil by Zn impregnated montmorollonite clay. Arabian Journal of Chemistry, 10, 3263-3269.
  • ASTM D1552-03(2000), Standard test method for sulfur in petroleum products (hightemperature method). Annual Book of Standards (American Society for Testing and Materials (ASTM), West Conshohocken, PA) Vol. 05.01.
  • Beşergil, B. (2007). Ham petrolden petrokimyasallara. http://www.bayar.edu.tr/besergil/-hampetrolden_petrokimyasallara, 10.06.2015.
  • Dashtpeyma, G., Shabanian, S.R., Ahmadpour, J., & Nikzad, M. (2022). The investigation of adsorption desulfurization performance using bimetallic CuCe and NiCe mesoporous Y zeolites: Modification of Y zeolite by H4EDTA-NaOH sequential treatment. Fuel Processing Technology, 235, 107379.https://doi.org/10.1016/j.fuproc.2022.107379
  • Dharaskar, S.A., Wasewar, K.L., Varma, M.N., Shende, D.Z., Tadi, K.K., & Yoo, C.K. (2014). Synthesis, characterization, and application of novel trihexyl tetradecyl phosphonium bis (2, 4, 4-trimethylpentyl) phosphinate for extractive desulfurization of liquid fuel. Fuel Processing Technology, 123, 1-10. https://doi.org/10.1016/j.fuproc.2014.02.001
  • Gördük, E., Özkan, V., Özkan, A. (2022). Alüminyum Oksit Nanopartikülleri İle Fonksiyonelleştirilmiş Çok Duvarlı Karbon Nanotüplerin Ham Petrol’de Adsorptif Desülfürizasyonu. Hoca Ahmet Yesevi 6. Uluslararası Bilimsel Araştırmalar Kongresi, Lenkeran, ISBN: 978-625-7464-86-4, 791-797. https://ww.yesevikongresi.org/
  • Kavak, Y and Haspolat, K. (2002). Farklı Yaklaşımlarla Enerji Kaynakları. Orient Yayınları, Gaziosmanpaşa– Çankaya/Ankara, Turkey.
  • Khaled, M. (2015). Adsorption performance of multiwall carbon nanotubes and graphene oxide for removal of thiophene and dibenzothiophene from model diesel fuel. Research on Chemical Intermediates, 41(12), 9817-9833.
  • Li, Y., Chi, K., Zhang, H., Du, P., Hu, D., Xiao, C., ... & Xu, C. (2018). The influence of hydrothermal crystallization temperature on a novel FDU-12 mesoporous composite assembled by ZSM-5 nanoclusters and its hydrodesulfurization performance for DBT and FCC diesel. Fuel Processing Technology, 180, 56-66. https://doi.org/10.1016/j.fuproc.2018.08.010
  • Özkan, A. (2022). Novel Research on the Use of Multi-Wall Carbon Nanotubes Functionalized with Copper Oxide Nanoparticles in the Adsorptive Desulfurization of Crude Oil: Laboratory Research. ECS Journal of Solid State Science and Technology, 11(9), 091012.
  • Özkan, V. and Özkan, A. (2022). Adsorptive Desulfurization of Crude Oil with Clinoptilolite Zeolite. Natural and Engineering Sciences, 7(3).
  • Rajendran, A., Fan, H.X., Feng, J., & Li, W.Y. (2020). Desulfurization on Boron Nitride and Boron Nitride‐based Materials. Chemistry–An Asian Journal, 15(14), 2038-2059. https://doi.org/10.1002/asia.202000479.
  • Rezvani, M.A., Shaterian, M., Aghbolagh, Z.S., & Akbarzadeh, F. (2019). Synthesis and characterization of new inorganic‐organic hybrid nanocomposite PMo11Cu@ MgCu2O4@ CS as an efficient heterogeneous nanocatalyst for ODS of real fuel. ChemistrySelect, 4(20), 6370-6376. https://doi.org/10.1002/slct.201900202
  • Srivastav, A., & Srivastava, V. C. (2009). Adsorptive desulfurization by activated alumina. Journal of Hazardous Materials, 170(2-3), 1133-1140.
  • Vickers, N.J. (2017). Animal communication: when I’m calling you, will you answer too? Current biology, 27(14), R713-R715. https://doi.org/10.1016/j.cub.2017.05.064
  • W. Ahmad. (2016). Sulfur in petroleum: petroleum desulfurization techniques. In Applying nanotechnology to the desulfurization process in petroleum engineering. IGI Global, 1-52.
  • Wang, J., Yang, B., Peng, X., Ding, Y., Yu, S., Zhang, F., ... & Guo, J. (2022). Design and preparation of polyoxometalate-based catalyst [MIMPs] 3PMo6W6O40 and its application in deep oxidative desulfurization with excellent recycle performance and low molar O/S ratio. Chemical Engineering Journal, 429, 132446. https://doi.org/10.1016/j.cej.2021.132446
  • Watanabe, S., Ma, X., & Song, C. (2021). Adsorptive desulfurization of jet fuels over TiO2-CeO2 mixed oxides: role of surface Ti and Ce cations. Catalysis Today, 371, 265-275. https://doi.org/10.1016/j.cattod.2020.07.071
  • Yang, N., Lu, L., Zhu, L., Wu, P., Tao, D., Li, X., ... & Zhu, W. (2022). Phosphomolybdic acid encapsulated in ZIF-8-based porous ionic liquids for reactive extraction desulfurization of fuels. Inorganic Chemistry Frontiers, 9(1), 165-178. https://doi.org/10.1039/D1QI01255J
  • Zhou, W., Zhou, A., Zhang, Y., Zhang, C., Chen, Z., Liu, L., ... & Tao, X. (2019). Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo supported on Ga-modified Y zeolites catalysts. Journal of Catalysis, 374, 345-359. https://doi.org/10.1016/j.jcat.2019.05.013

Genleştirilmiş Perlit ile Ham Petrolün Adsorptif Desülfürizasyonu

Year 2022, Volume: 9 Issue: 2, 175 - 183, 31.12.2022
https://doi.org/10.48138/cjo.1206761

Abstract

Ham petrol; rafine edilerek kullanılması mümkün hale gelen, toplumun refahı, ekonomik kalkınması ve yaşam kalitesi için kritik öneme sahip fosil bir enerji kaynağıdır. Fosil yakıtların kullanımı sonucunda karbondioksit (CO2), kükürt oksit (SOx) ve diğer sera gazları açığa çıkmakta ve bu gazlar küresel iklim değişikliğinin ana nedeni olarak ifade edilmektedir. Bu nedenle bilim adamları, ham petrolde yanma reaksiyonları sonucu açığa çıkan SOx gazlarının zararlı etkilerini en aza indirmek için yoğun çaba sarf etmektedirler.
Sunulan bu çalışmada; volkanik bir kayaç türü olan ve ısıtılması sonucu genleşen ve gözenekli bir yapı kazanan genleşmiş perlit kullanılarak ham petrolün kükürt içeriği adsorptif kükürt giderme tekniği ile düşürülmeye çalışılmıştır. Bu amaçla 50 mL ham petrol numunesine ayrı ayrı 2, 4, 6, 8 ve 10 g genleştirilmiş perlit karıştırılmış ve daha sonra oda sıcaklığında 400 rpm'de bir saat boyunca manyetik karıştırıcı ile karıştırılarak adsorptif kükürt giderme işlemine tabi tutulmuştur. . Daha sonra santrifüj yardımıyla adsorbandan ayrılmış ve ASTM D 1552-03 yöntemine göre LECO 628S cihazı ile kükürt miktarı belirlenmiştir.
Çalışma sonucunda, ham petroldeki kükürt miktarının %10,82 oranında azaldığı belirlenmiştir. Bu çalışma ile, genleştirilmiş ham perlitin kükürt giderme için iyi bir kapasiteye sahip olduğu, yenilenebilir nitelikte olduğu ve kükürt bileşiklerini uzaklaştırmak için kararlı bir yapıya sahip olduğu tespit edilmiştir.

References

  • Abd Al-Khodor, Y. A., & Albayati, T. M. (2020). Adsorption desulfurization of actual heavy crude oil using activatedcarbon. Eng. and Tech. J, 38, 1441-1453.
  • Ahmad, W., Ahmad, I., Ishaq, M., & Ihsan, K. (2017). Adsorptive desulfurization of kerosene and diesel oil by Zn impregnated montmorollonite clay. Arabian Journal of Chemistry, 10, 3263-3269.
  • ASTM D1552-03(2000), Standard test method for sulfur in petroleum products (hightemperature method). Annual Book of Standards (American Society for Testing and Materials (ASTM), West Conshohocken, PA) Vol. 05.01.
  • Beşergil, B. (2007). Ham petrolden petrokimyasallara. http://www.bayar.edu.tr/besergil/-hampetrolden_petrokimyasallara, 10.06.2015.
  • Dashtpeyma, G., Shabanian, S.R., Ahmadpour, J., & Nikzad, M. (2022). The investigation of adsorption desulfurization performance using bimetallic CuCe and NiCe mesoporous Y zeolites: Modification of Y zeolite by H4EDTA-NaOH sequential treatment. Fuel Processing Technology, 235, 107379.https://doi.org/10.1016/j.fuproc.2022.107379
  • Dharaskar, S.A., Wasewar, K.L., Varma, M.N., Shende, D.Z., Tadi, K.K., & Yoo, C.K. (2014). Synthesis, characterization, and application of novel trihexyl tetradecyl phosphonium bis (2, 4, 4-trimethylpentyl) phosphinate for extractive desulfurization of liquid fuel. Fuel Processing Technology, 123, 1-10. https://doi.org/10.1016/j.fuproc.2014.02.001
  • Gördük, E., Özkan, V., Özkan, A. (2022). Alüminyum Oksit Nanopartikülleri İle Fonksiyonelleştirilmiş Çok Duvarlı Karbon Nanotüplerin Ham Petrol’de Adsorptif Desülfürizasyonu. Hoca Ahmet Yesevi 6. Uluslararası Bilimsel Araştırmalar Kongresi, Lenkeran, ISBN: 978-625-7464-86-4, 791-797. https://ww.yesevikongresi.org/
  • Kavak, Y and Haspolat, K. (2002). Farklı Yaklaşımlarla Enerji Kaynakları. Orient Yayınları, Gaziosmanpaşa– Çankaya/Ankara, Turkey.
  • Khaled, M. (2015). Adsorption performance of multiwall carbon nanotubes and graphene oxide for removal of thiophene and dibenzothiophene from model diesel fuel. Research on Chemical Intermediates, 41(12), 9817-9833.
  • Li, Y., Chi, K., Zhang, H., Du, P., Hu, D., Xiao, C., ... & Xu, C. (2018). The influence of hydrothermal crystallization temperature on a novel FDU-12 mesoporous composite assembled by ZSM-5 nanoclusters and its hydrodesulfurization performance for DBT and FCC diesel. Fuel Processing Technology, 180, 56-66. https://doi.org/10.1016/j.fuproc.2018.08.010
  • Özkan, A. (2022). Novel Research on the Use of Multi-Wall Carbon Nanotubes Functionalized with Copper Oxide Nanoparticles in the Adsorptive Desulfurization of Crude Oil: Laboratory Research. ECS Journal of Solid State Science and Technology, 11(9), 091012.
  • Özkan, V. and Özkan, A. (2022). Adsorptive Desulfurization of Crude Oil with Clinoptilolite Zeolite. Natural and Engineering Sciences, 7(3).
  • Rajendran, A., Fan, H.X., Feng, J., & Li, W.Y. (2020). Desulfurization on Boron Nitride and Boron Nitride‐based Materials. Chemistry–An Asian Journal, 15(14), 2038-2059. https://doi.org/10.1002/asia.202000479.
  • Rezvani, M.A., Shaterian, M., Aghbolagh, Z.S., & Akbarzadeh, F. (2019). Synthesis and characterization of new inorganic‐organic hybrid nanocomposite PMo11Cu@ MgCu2O4@ CS as an efficient heterogeneous nanocatalyst for ODS of real fuel. ChemistrySelect, 4(20), 6370-6376. https://doi.org/10.1002/slct.201900202
  • Srivastav, A., & Srivastava, V. C. (2009). Adsorptive desulfurization by activated alumina. Journal of Hazardous Materials, 170(2-3), 1133-1140.
  • Vickers, N.J. (2017). Animal communication: when I’m calling you, will you answer too? Current biology, 27(14), R713-R715. https://doi.org/10.1016/j.cub.2017.05.064
  • W. Ahmad. (2016). Sulfur in petroleum: petroleum desulfurization techniques. In Applying nanotechnology to the desulfurization process in petroleum engineering. IGI Global, 1-52.
  • Wang, J., Yang, B., Peng, X., Ding, Y., Yu, S., Zhang, F., ... & Guo, J. (2022). Design and preparation of polyoxometalate-based catalyst [MIMPs] 3PMo6W6O40 and its application in deep oxidative desulfurization with excellent recycle performance and low molar O/S ratio. Chemical Engineering Journal, 429, 132446. https://doi.org/10.1016/j.cej.2021.132446
  • Watanabe, S., Ma, X., & Song, C. (2021). Adsorptive desulfurization of jet fuels over TiO2-CeO2 mixed oxides: role of surface Ti and Ce cations. Catalysis Today, 371, 265-275. https://doi.org/10.1016/j.cattod.2020.07.071
  • Yang, N., Lu, L., Zhu, L., Wu, P., Tao, D., Li, X., ... & Zhu, W. (2022). Phosphomolybdic acid encapsulated in ZIF-8-based porous ionic liquids for reactive extraction desulfurization of fuels. Inorganic Chemistry Frontiers, 9(1), 165-178. https://doi.org/10.1039/D1QI01255J
  • Zhou, W., Zhou, A., Zhang, Y., Zhang, C., Chen, Z., Liu, L., ... & Tao, X. (2019). Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo supported on Ga-modified Y zeolites catalysts. Journal of Catalysis, 374, 345-359. https://doi.org/10.1016/j.jcat.2019.05.013
There are 21 citations in total.

Details

Primary Language English
Subjects Environmental Sciences
Journal Section Articles
Authors

Abdullah Özkan 0000-0002-6799-2396

Vildan Özkan 0000-0001-8719-9099

Publication Date December 31, 2022
Submission Date November 18, 2022
Acceptance Date December 26, 2022
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

APA Özkan, A., & Özkan, V. (2022). Adsorptive Desulfurization of Crude Oil with Expanded Perlite. Caucasian Journal of Science, 9(2), 175-183. https://doi.org/10.48138/cjo.1206761

dizin1.png dizin2.png dizin3.png  dizin5.png dizin6.png dizin7.png