Preview

Научно-практическая ревматология

Расширенный поиск

Молекулярные механизмы развития феноменов периферической и центральной сенситизации при ревматоидном артрите

https://doi.org/10.47360/1995-4484-2023-77-86

Аннотация

Современная тактика лечения ревматоидного артрита (РА) направлена на достижение ремиссии или низкой активности заболевания, максимальное устранение проявлений болезни и восстановление физической и социальной активности пациентов. Вместе с тем, несмотря на широкий спектр самых современных патогенетических средств, хороший терапевтический ответ удается получить далеко не во всех случаях. Сложной проблемой является т. н. рефрактерный к лечению (difficult to treat) РА, при котором отмечается неэффективность двух и более последовательно назначенных генно-инженерных биологических препаратов или ингибиторов янус-киназы. Одним из важных факторов, негативно влияющих на результат лечения РА, являются функциональные нарушения ноцицептивной системы, такие как периферическая и центральная сенситизация. Эти феномены, связанные со стойкой активацией ноцицептивных нейронов и развитием ноципластических изменений, вызваны системным аутоиммунным воспалением и влиянием различных цитокинов и хемокинов на мембрану нейронов. В данном обзоре рассматриваются молекулярно-биологические аспекты формирования периферической и центральной сенситизации при РА с анализом патогенетической роли отдельных интерлейкинов.

Об авторе

А. С. Потапова
ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой»
Россия

Потапова Алена Сергеевна, аспирант 2-го года 
Научный руководитель - дмн Каратеев А.Е. 

 115522, Российская Федерация, Москва, Каширское шоссе, 34а 



Список литературы

1. Насонов ЕЛ, Коротаева ТВ. Ингибиторы Янус-киназ при иммуновоспалительных заболеваниях: 10 лет клинической практики в ревматологии. Научно-практическая ревматология. 2022;60(2):131-148. doi: 10.47360/1995-4484-2022-131-148

2. Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis. Lancet. 2017;389(10086):2338-2348. doi: 10.1016/S0140-6736(17)31491-5

3. Smolen JS, Aletaha D. Rheumatoid arthritis therapy reappraisal: Strategies, opportunities and challenges. Nat Rev Rheumatol. 2015;11(5):276-289. doi: 10.1038/nrrheum.2015.8

4. Ajeganova S, Huizinga T. Sustained remission in rheumatoid arthritis: Latest evidence and clinical considerations. Ther Adv Musculoskelet Dis. 2017;9(10):249-262. doi: 10.1177/1759720X17720366

5. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4: 18001. doi: 10.1038/nrdp.2018.1

6. Насонов ЕЛ, Олюнин ЮА, Лила АМ. Ревматоидный артрит: проблемы ремиссии и резистентности к терапии. Научно-практическая ревматология. 2018;56(3):263-271. doi: 10.14412/1995-4484-2018-263-271

7. Roodenrijs NMT, Hamar A, Kedves M, Nagy G, van Laar JM, van der Heijde D, et al. Pharmacological and non-pharmacological therapeutic strategies in difficult-to-treat rheumatoid arthritis: A systematic literature review informing the EULAR recommendations for the management of difficult-to-treat rheumatoid arthritis. RMD Open. 2021;7(1):e001512. doi: 10.1136/rmdopen-2020-001512

8. Romao VC, Vital EM, Fonseca JE, Buch MH. Right drug, right patient, right time: Aspiration or future promise for biologics in rheumatoid arthritis? Arthritis Res Ther. 2017;19:1-13. doi: 10.1186/s13075-017-1445-3

9. Schaeverbeke T, Truchetet ME, Kostine M, Barnetche T, Bannwarth B, Richez C. Immunogenicity of biologic agents in rheumatoid arthritis patients: Lessons for clinical practice. Rheumatology (Oxford). 2016;55(2):210-220. doi: 10.1093/rheumatology/kev277

10. An J, Nyarko E, Hamad MA. Prevalence of comorbidities and their associations with health-related quality of life and healthcare expenditures in patients with rheumatoid arthritis. Clin Rheumatol. 2019;38(10):2717-2726. doi: 10.1007/s10067-019-04613-2

11. Dougados M, Soubrier M, Antunez A, Balint P, Balsa A, Buch MH, et al. Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring: Results of an international, cross-sectional study (COMORA). Ann Rheum Dis. 2014;73(1):62-68. doi: 10.1136/annrheumdis-2013-204223

12. Lee YC, Frits ML, Iannaccone CK, Weinblatt ME, Shadick NA, Williams DA, et al. Subgrouping of patients with rheumatoid arthritis based on pain, fatigue, inflammation, and psychosocial factors. Arthritis Rheumatol. 2014;66(8):2006-2014. doi: 10.1002/art.38682

13. George M, Baker JF. The obesity epidemic and consequences for rheumatoid arthritis care. Curr Rheumatol Rep. 2016;18:6. doi: 10.1007/s11926-015-0550-z

14. Pasma A, Spijker A, Hazes JMW, Busschbach JJV, Luime JJ. Factors associated with adherence to pharmaceutical treatment for rheumatoid arthritis patients: A systematic review. Semin Arthritis Rheum. 2013;43:18-28. doi: 10.1016/j.semarthrit.2012.12.001

15. Абрамкин АА, Лисицына ТА, Вельтищев ДЮ, Серавина ОФ, Ковалевская ОБ, Глухова СИ, и др. Факторы, влияющие на эффективность терапии у больных ревматоидным артритом: роль коморбидной психической и соматической патологии. Научно-практическая ревматология. 2018;56(4):439-448. doi: 10.14412/1995-4484-2018-439-448

16. Лила АМ, Гордеев АВ, Олюнин ЮА, Галушко ЕА. Мультиморбидность в ревматологии. От комплексной оценки болезни – к оценке комплекса болезней. Современная ревматология. 2019;13(3):4-9. doi: 10.14412/1996-7012-2019-3-4-9

17. Рыбакова ВВ, Олюнин ЮА, Лихачева ЭВ, Насонов ЕЛ. Показатели активности ревматоидного артрита. Связь с психологическим статусом пациента. Современная ревматология. 2020;14(2):27-34. doi: 10.14412/1996-7012-2020-2-27-34

18. Poudel D, George MD, Baker JF. The impact of obesity on disease activity and treatment response in rheumatoid arthritis. Curr Rheumatol Rep. 2020;22(9):56. doi: 10.1007/s11926-020-00933-4

19. George MD, Baker JF. The obesity epidemic and consequences for rheumatoid arthritis care. Curr Rheumatol Rep. 2016;18(1):6. doi: 10.1007/s11926-015-0550-z

20. Lee SY, Ibrahim F, Tom BDM, Nikiphorou E, Williams FMK, Lempp H, et al. Baseline predictors of remission, pain and fatigue in rheumatoid arthritis: The TITRATE trial. Arthritis Res Ther. 2021;23(1):278. doi: 10.1186/s13075-021-02653-1

21. Singh S, Facciorusso A, Singh AG, Vande Casteele N, Zarrinpar A, Prokop LJ, et al. Obesity and response to anti-tumor necrosis factor-α agents in patients with select immune-mediated inflammatory diseases: A systematic review and meta-analysis. PLoS One. 2018;13(5):e0195123. doi: 10.1371/journal.pone.0195123

22. Schäfer M, Albrecht K, Kekow J, Rockwitz K, Liebhaber A, Zink A, et al. Factors associated with treatment satisfaction in patients with rheumatoid arthritis: Data from the biological register RABBIT. RMD Open. 2020;6(3):e001290. doi: 10.1136/rmdopen-2020-001290

23. Anghel LA, Farcaş AM, Oprean RN. Medication adherence and persistence in patients with autoimmune rheumatic diseases: A narrative review. Patient Prefer Adherence. 2018;12:1151-1166. doi: 10.2147/PPA.S165101

24. de Rooy DP, van Nies JA, Kapetanovic MC, Kristjansdottir H, Andersson ML, Forslind K, et al. Smoking as a risk factor for the radiological severity of rheumatoid arthritis: A study on six cohorts. Ann Rheum Dis. 2014;73(7):1384-1387. doi: 10.1136/annrheumdis-2013-203940

25. Salaffi F, Giacobazzi G, Di Carlo M. Chronic pain in inflammatory arthritis: Mechanisms, metrology, and emerging targets – A focus on the JAK-STAT pathway. Pain Res Manag. 2018;2018:8564215. doi: 10.1155/2018/8564215

26. Каратеев АЕ, Насонов ЕЛ. Хроническая боль и центральная сенситизация при иммуновоспалительных ревматических заболеваниях: патогенез, клинические проявления, возможность применения таргетных базисных противовоспалительных препаратов. Научно-практическая ревматология. 2019; 57(2):197-209. doi: 10.14412/1995-4484-2019-197-209

27. Rifbjerg-Madsen S, Christensen AW, Christensen R, Hetland ML, Bliddal H, Kristensen LE, et al. Pain and pain mechanisms in patients with inflammatory arthritis: A Danish nationwide cross-sectional DANBIO registry survey. PLoS One. 2017;12(7):e0180014. doi: 10.1371/journal.pone.0180014

28. Adami G, Gerratana E, Atzeni F, Benini C, Vantaggiato E, Rotta D, et al. Is central sensitization an important determinant of functional disability in patients with chronic inflammatory arthritides? Ther Adv Musculoskelet Dis. 2021;13:1759720X21993252. doi: 10.1177/1759720X21993252

29. Saitou M, Noda K, Matsushita T, Ukichi T, Kurosaka D. Central sensitisation features are associated with neuropathic pain-like symptoms in patients with longstanding rheumatoid arthritis: A cross-sectional study using the central sensitisation inventory. Clin Exp Rheumatol. 2022;40(5):980-987. doi: 10.55563/clinexprheumatol/msy022

30. Heisler AC, Song J, Dunlop DD, Wohlfahrt A, Bingham CO III, Bolster MB, et al. Association of pain centralization and patientreported pain in active rheumatoid arthritis. Arthritis Care Res (Hoboken). 2020;72(8):1122-1129. doi: 10.1002/acr.23994

31. Duffield S, Miller N, Zhao S, Goodson N. Concomitant fibromyalgia complicating chronic inflammatory arthritis: A systematic review and meta-analysis. Rheumatology (Oxford). 2018;57(8):1453-1460. doi: 10.1093/rheumatology/key112

32. Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat Med. 2010;16(11):1248-1257. doi: 10.1038/nm.2235

33. Каратеев АЕ, Каратеев ДЕ, Давыдов ОС. Боль и воспаление. Часть 1. Патогенетические аспекты. Научно-практическая ревматология. 2016;54(6):693-704. doi: 10.14412/1995-4484-2016-693-704

34. Mantyh PW. The neurobiology of skeletal pain. Eur J Neurosci. 2014;39(3):508-519. doi: 10.1111/ejn.12462

35. Arendt-Nielsen L, Morlion B, Perrot S, Dahan A, Dickenson A, Kress HG, et al. Assessment and manifestation of central sensitisation across different chronic pain conditions. Eur J Pain. 2018;22(2):216-241. doi: 10.1002/ejp.1140

36. Ghosh K, Pan HL. Epigenetic mechanisms of neural plasticity in chronic neuropathic pain. ACS Chem Neurosci. 2022;13(4):432-441. doi: 10.1021/acschemneuro.1c00841

37. Woolf CJ. Central sensitization: Implications for the diagnosis and treatment of pain. Pain. 2011;152(Suppl 3):2-15. doi: 10.1016/j.pain.2010.09.030

38. Филатова ЕС. Роль центральной сенситизации в формировании и поддержании хронической боли у пациентов с заболеваниями суставов. Терапия. 2021;7-1(43):90-96. doi: 10.18565/therapy.2021.1.90-96

39. Филатова ЕС. Роль центральной нервной системы в формировании и поддержании хронической боли у пациентов с заболеваниями суставов. Opinion Leader. 2019;3(21):46-52.

40. Филатова ЕС, Лила АМ. Вклад нейрогенных механизмов в патогенез хронической суставной боли. Современная ревматология. 2021;15(2):43-49. doi: 10.14412/1996-7012-2021-2-43-49

41. Goebel A. Autoantibody pain. Autoimmun Rev. 2016;15(6):552-557. doi: 10.1016/j.autrev.2016.02.011

42. Schaible HG. Nociceptive neurons detect cytokines in arthritis. Arthritis Res Ther. 2014;16(5):470. doi: 10.1186/s13075-014-0470-8

43. Simon LS, Taylor PC, Choy EH, Sebba A, Quebe A, Knopp KL, et al. The Jak/STAT pathway: A focus on pain in rheumatoid arthritis. Semin Arthritis Rheum. 2021;51(1):278-284. doi: 10.1016/j.semarthrit.2020.10.008

44. Kato M. New insights into IFN-γ in rheumatoid arthritis: Role in the era of JAK inhibitors. Immunol Med. 2020;43(2):72-78. doi: 10.1080/25785826.2020.1751908

45. Carvalho AÉS, Sousa MRR, Alencar-Silva T, Carvalho JL, Saldanha-Araujo F. Mesenchymal stem cells immunomodulation: The road to IFN-γ licensing and the path ahead. Cytokine Growth Factor Rev. 2019;47:32-42. doi: 10.1016/j.cytogfr.2019.05.006

46. Kondo N, Kuroda T, Kobayashi D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int J Mol Sci. 2021;22(20):10922. doi: 10.3390/ijms222010922

47. Salomon BL. Insights into the biology and therapeutic implications of TNF and regulato ry T cells. Nat Rev Rheumatol. 2021; 17(8):487-504. doi: 10.1038/s41584-021-00639-6

48. Inglis JJ, Nissim A, Lees DM, Hunt SP, Chernajovsky Y, Kidd BL. The differential contribution of tumour necrosis factor to thermal and mechanical hyperalgesia during chronic inflammation. Arthritis Res Ther. 2005;7(4):807-816. doi: 10.1186/ar1743

49. Hess A, Axmann R, Rech J, Finzel S, Heindl C, Kreitz S, et al. Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc Natl Acad Sci U S A. 2011;108(9):3731-3736. doi: 10.1073/pnas.1011774108

50. Boakye PA, Tang SJ, Smith PA. Mediators of neuropathic pain; focus on spinal microglia, CSF-1, BDNF, CCL21, TNF-α, Wnt ligands, and interleukin 1β. Front Pain Res (Lausanne). 2021;2:698157. doi: 10.3389/fpain.2021.698157

51. Andrade P, Visser-Vandewalle V, Hoffmann C, Steinbusch HVM, Daemen MA, Hoogland G. Role of TNF-alpha during central sensitization in preclinical studies. Neurol Sci. 2011;32(5):757-771. doi: 10.1007/s10072-011-0599-z

52. Woś I, Tabarkiewicz J. Effect of interleukin-6, -17, -21, -22, and -23 and STAT3 on signal transduction pathways and their inhibition in autoimmune arthritis. Immunol Res. 2021;69(1):26-42. doi: 10.1007/s12026-021-09173-9

53. Harrell CR, Markovic BS, Fellabaum C, Arsenijevic N, Djonov V, Volarevic N. The role of interleukin 1 receptor antagonist in mesenchymal stem cell-based tissue repair and regeneration. Biofactors. 2020;46(2):263-275. doi: 10.1002/biof.1587

54. Starobova H, Nadar EI, Vetter I. The NLRP3 inflammasome: Role and therapeutic potential in pain treatment. Front Physiol. 2020;11:1016. doi: 10.3389/fphys.2020.01016

55. Arranz L, Arriero MDM, Villatoro A. Interleukin-1β as emerging therapeutic target in hematological malignancies and potentially in their complications. Blood Rev. 2017;31(5):306-317. doi: 10.1016/j.blre.2017.05.001

56. Mayer-Barber KD, Yan B. Clash of the cytokine titans: Counterregulation of interleukin-1 and type I interferon-mediated inflammatory responses. Cell Mol Immunol. 2017;14(1):22-35. doi: 10.1038/cmi.2016.25

57. Choy EHS, Calabrese LH. Neuroendocrine and neurophysiological effects of interleukin 6 in rheumatoid arthritis. Rheumatology (Oxford). 2018;57(11):1885-1895. doi: 10.1093/rheumatology/kex391

58. März P, Otten U, Rose-John S. Neural activities of IL-6-type cytokines often depend on soluble cytokine receptors. Eur J Neurosci. 1999;11(9):2995-3004. doi: 10.1046/j.1460-9568.1999.00755.x

59. Dubový P, Hradilová-Svíženská I, Klusáková I, Bra’zda V, Joukal M. Interleukin-6 contributes to initiation of neuronal regeneration program in the remote dorsal root ganglia neurons after sciatic nerve injury. Histochem Cell Biol. 2019;152(2):109-117. doi: 10.1007/s00418-019-01779-3

60. Zhou YQ, Liu Z, Liu ZH, Chen SP, Li M, Shahveranov A, et al. Interleukin-6: An emerging regulator of pathological pain. J Neuroinflammation. 2016;13(1):141. doi: 10.1186/s12974-016-0607-6

61. Brennan FM, McInnes IB. Evidence that cytokines play a role in rheumatoid arthritis. J Clin Invest. 2008;118(11):3537-3545. doi: 10.1172/JCI36389

62. Schaible HG. Nociceptive neurons detect cytokines in arthritis. Arthritis Res Ther. 2014;16(5):470. doi: 10.1186/s13075-014-0470-8

63. Sebba A. Pain: A review of interleukin-6 and its roles in the pain of rheumatoid arthritis. Open Access Rheumatol. 2021;13:31-43. doi: 10.2147/OARRR.S291388

64. Maślińska M, Trędzbor B, Krzystanek M. Dysbiosis, gut-blood barrier rupture and autoimmune response in rheumatoid arthritis and schizophrenia. Reumatologia. 2021;59(3):180-187. doi: 10.5114/reum.2021.107588

65. Kozlowska U, Nichols C, Wiatr K, Figiel M. From psychiatry to neurology: Psychedelics as prospective therapeutics for neurodegenerative disorders. J Neurochem. 2022;162(1):89-108. doi: 10.1111/jnc.15509

66. Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol. 2023;23(1):38-54. doi: 10.1038/s41577-022-00746-9

67. Zhang A, Lee YC. Mechanisms for joint pain in rheumatoid arthritis (RA): From cytokines to central sensitization. Curr Osteoporos Rep. 2018;16(5):603-610. doi: 10.1007/s11914-018-0473-5

68. Ziolkowska M, Koc A, Luszczykiewicz G, Ksiezopolska-Pietrzak K, Klimczak E, Chwalinska-Sadowska H, et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol. 2000;164(5):2832-2838. doi: 10.4049/jimmunol.164.5.2832

69. Misra S, Mondal S, Chatterjee S, Dutta S, Sinha D, Bhattacharjee D, et al. Interleukin-17 as a predictor of subclinical synovitis in the remission state of rheumatoid arthritis. Cytokine. 2022;153:155837. doi: 10.1016/j.cyto.2022.155837

70. Pinto LG, Cunha TM, Vieira SM, Lemos HP, Verri WA Jr, Cunha FQ, et al. IL-17 mediates articular hypernociception in antigen-induced arthritis in mice. Pain. 2010;148(2):247-256. doi: 10.1016/j.pain.2009.11.006

71. Segond von Banchet G, Boettger MK, König C, Iwakura Y, Bräuer R, Schaible HG. Neuronal IL-17 receptor upregulates TRPV4 but not TRPV1 receptors in DRG neurons and mediates mechanical but not thermal hyperalgesia. Mol Cell Neurosci. 2013;52:152-160. doi: 10.1016/j.mcn.2012.11.006

72. You T, Bi Y, Li J, Zhang M, Chen X, Zhang K, et al. IL-17 induces reactive astrocytes and up-regulation of vascular endothelial growth factor (VEGF) through JAK/STAT signaling. Sci Rep. 2017;7:41779. doi: 10.1038/srep41779

73. Beazley-Long N, Hodge D, Ashby WR, Bestall SM, Almahasneh F, Durrant AM, et al. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav Immun. 2018;74:49-67. doi: 10.1016/j.bbi.2018.03.012

74. Hanisch UK. Microglia as a source and target of cytokines. Glia. 2002;40(2):140-155. doi: 10.1002/glia.10161

75. Fischer V, Haffner-Luntzer M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 2022;123:14-21. doi: 10.1016/j.semcdb.2021.05.014

76. Busch-Dienstfertig M, González-Rodríguez S. IL-4, JAK-STAT signaling, and pain. JAKSTAT. 2013;2(4):e27638. doi: 10.4161/jkst.27638

77. Vanderwall AG, Milligan ED. Cytokines in pain: Harnessing endogenous anti-inflammatory signaling for improved pain management. Front Immunol. 2019;10:3009. doi: 10.3389/fimmu.2019.03009

78. Ross EA, Devitt A, Johnson JR. Macrophages: The good, the bad, and the gluttony. Front Immunol. 2021;12:708186. doi: 10.3389/fimmu.2021.708186

79. So EY, Oh J, Jang JY, Kim JH, Lee CE. Ras/Erk pathway positively regulates Jak1/STAT6 activity and IL-4 gene expression in Jurkat T cells. Mol Immunol. 2007;44(13):3416-3426. doi: 10.1016/j.molimm.2007.02.022

80. Новиков АА, Александрова ЕН, Диатроптова MA, Насонов ЕЛ. Роль цитокинов в патогенезе ревматоидного артрита. Научно-практическая ревматология. 2010;48(2):71-82. doi: 10.14412/1995-4484-2010-1420

81. Zdanov A. Structural analysis of cytokines comprising the IL-10 family. Cytokine Growth Factor Rev. 2010;21(5):325-330. doi: 10.1016/j.cytogfr.2010.08.003

82. Verma R, Balakrishnan L, Sharma K, Khan AA, Advani J, Gowda H, et al. A network map of interleukin-10 signaling pathway. J Cell Commun Signal. 2016;10(1):61-67. doi: 10.1007/s12079-015-0302-x

83. Gregori S, Amodio G, Passerini L, Santoni de Sio FR. Alteration of interleukin-10-producing type 1 regulatory cells in autoimmune diseases. Curr Opin Hematol. 2022;29(4):218-224. doi: 10.1097/MOH.0000000000000720

84. Blanco P, Palucka AK, Pascual V, Banchereau J. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev. 2008;19(1):41-52. doi: 10.1016/j.cytogfr.2007.10.004

85. Quarta A, Berneman Z, Ponsaerts P. Neuroprotective modulation of microglia effector functions following priming with interleukin 4 and 13: Current limitations in understanding their mode-ofaction. Brain Behav Immun. 2020;88:856-866. doi: 10.1016/j.bbi.2020.03.023

86. Campbell IK, Rich MJ, Bischof RJ, Hamilton JA. The colonystimulating factors and collagen-induced arthritis: Exacerbation of disease by M-CSF and G-CSF and requirement for endogenous M-CSF. J Leukoc Biol. 2000;68(1):144-150.

87. Cook AD, Braine EL, Campbell IK, Hamilton JA. Blockade of collagen-induced arthritis post-onset by antibody to granulocytemacrophage colony-stimulating factor (GMCSF): Requirement for GM-CSF in the effector phase of disease. Arthr Res. 2001;3(5):293-298. doi: 10.1186/ar318

88. Hamilton JA. GM-CSF-dependent inflammatory pathways. Front Immunol. 2019;10:2055. doi: 10.3389/fimmu.2019.02055

89. Crotti C, Agape E, Becciolini A, Biggioggero M, Favalli EG. Targeting granulocyte-monocyte colony-stimulating factor signaling in rheumatoid arthritis: Future prospects. Drugs. 2019;79(16):1741-1755. doi: 10.1007/s40265-019-01192-z

90. Conaghan PG, Cook AD, Hamilton JA, Tak PP. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat Rev Rheumatol. 2019;15(6):355-363. doi: 10.1038/s41584-019-0221-y

91. Nicol LSC, Thornton P, Hatcher JP, Glover CP, Webster CI, Burrell M, et al. Central inhibition of granulocyte-macrophage colony-stimulating factor is analgesic in experimental neuropathic pain. Pain. 2018;159(3):550-559. doi: 10.1097/j.pain.0000000000001130

92. Franzen R, Bouhy D, Schoenen J. Nervous system injury: focus on the inflammatory cytokine ‘granulocyte-macrophage colony stimulating factor’. Neurosci Lett. 2004;361(1-3):76-78. doi: 10.1016/j.neulet.2003.12.018


Рецензия

Для цитирования:


Потапова А.С. Молекулярные механизмы развития феноменов периферической и центральной сенситизации при ревматоидном артрите. Научно-практическая ревматология. 2023;61(1):77-86. https://doi.org/10.47360/1995-4484-2023-77-86

For citation:


Potapova A.S. Molecular mechanisms of the development of the phenomena of peripheral and central sensitization in rheumatoid arthritis. Rheumatology Science and Practice. 2023;61(1):77-86. (In Russ.) https://doi.org/10.47360/1995-4484-2023-77-86

Просмотров: 256


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-4484 (Print)
ISSN 1995-4492 (Online)