Chicken Eggshell Powder as Antibacterial Against Staphylococcus aureus and Escherichia coli Through In Vitro Studies

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.205

Keywords:

antibacterial, purebred chicken eggshell powder, thermal decomposition, Staphylococcus aureus, Escherichia coli

Abstract

Identifying the most effective material with antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) is a challenging task considering the rising concerns about drug resistance. Various experiments through in vitro and in vivo studies to obtain antibacterial agents using abundant and easily available raw material sources have been conducted. Therefore, this study aimed to acquire semiconducting nanoparticle material derived from purebred chicken eggshell waste that could effectively function as an antibacterial agent. The waste treatment was carried out using a top-down method applying the thermal decomposition method with calcination temperatures of 700 and 800 ºC for 30 hours. XRD analysis results showed CaO as a major phase and this was further supported by Rietveld calculation. The size of the crystalline phases obtained ranged from 10–45 nm, while FTIR analysis showed the appearance of CaO bond at a wave number of 715.65 cm-1. Furthermore, SEM analysis showed a rough folded particle surface with a pore percentage of 48.20%. Based on the UV-Vis DRS analysis results, chicken eggshell powder had band gap energy characteristics of 2.07, 2.74, 3.71, and 5.96 eV for sample B, as well as 4.60 and 5.82 eV for sample C. Activation of purebred chicken eggshell powder as antibacterial was performed both qualitatively and quantitatively using photocatalytic and non-photocatalytic methods. Qualitatively, both samples showed antibacterial activity, with a minimal inhibitory concentration (MIC) of 1,000 µg/mL.

References

[1] M. E. S. Sule, E. Astuty, and R. Tahitu. (2023). "In Vitro Antibacterial Activity and Phytochemical Screening of Galoba (Hornstedtia alliaceae) Seeds Extract". Bioactivities. 1 (2): 81-89. 10.47352/bioactivities.2963-654X.196.

[2] S. A. Polash, T. Khare, V. Kumar, and R. Shukla. (2021). "Prospects of Exploring the Metal-Organic Framework for Combating Antimicrobial Resistance". ACS Applied Bio Materials. 4 (12): 8060-8079. 10.1021/acsabm.1c00832.

[3] Y. S. Kurniawan, T. Indriani, H. Amrulloh, L. C. Adi, A. C. Imawan, K. T. A. Priyangga, and E. Yudha. (2023). "Journey of Natural Products: From Isolation Stage to Drug’s Approval in Clinical Trials". Bioactivities. 1 (2): 43-60. 10.47352/bioactivities.2963-654X.190.

[4] J. W. Betts, M. Hornsey, and R. M. La Ragione. (2018). "Novel Antibacterials: Alternatives to Traditional Antibiotics". Advances in Microbial Physiology. 73 : 123-169. 10.1016/bs.ampbs.2018.06.001.

[5] A. Valsamatzi-Panagiotou, M. Traykovska, and R. Penchovsky. (2020). In: "Drug Discovery Targeting Drug-Resistant Bacteria". 9-37. 10.1016/b978-0-12-818480-6.00002-3.

[6] T. N. Almanaa, S. A. Alyahya, J. M. Khaled, M. R. Shehu, N. S. Alharbi, S. Kadaikunnan, A. S. Alobaidi, and A. Khalid Alzahrani. (2020). "The extreme drug resistance (XDR) Staphylococcus aureus strains among patients: A retrospective study". Saudi Journal of Biological Sciences. 27 (8): 1985-1992. 10.1016/j.sjbs.2020.04.003.

[7] M. Koeck, K. Como-Sabetti, D. Boxrud, G. Dobbins, A. Glennen, M. Anacker, S. Jawahir, I. See, and R. Lynfield. (2019). "Burdens of Invasive Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus Disease, Minnesota, USA". Emerging Infectious Diseases. 25 (1): 171-174. 10.3201/eid2501.181146.

[8] M. Brown-Jaque, W. Calero-Caceres, and M. Muniesa. (2015). "Transfer of antibiotic-resistance genes via phage-related mobile elements". Plasmid. 79 : 1-7. 10.1016/j.plasmid.2015.01.001.

[9] A. Karkman, T. T. Do, F. Walsh, and M. P. J. Virta. (2018). "Antibiotic-Resistance Genes in Waste Water". Trends in Microbiology. 26 (3): 220-228. 10.1016/j.tim.2017.09.005.

[10] S. R. Partridge, S. M. Kwong, N. Firth, and S. O. Jensen. (2018). "Mobile Genetic Elements Associated with Antimicrobial Resistance". Clinical Microbiology Reviews. 31 (4). 10.1128/CMR.00088-17.

[11] P. G. Bhavyasree and T. S. Xavier. (2020). "Green synthesis of Copper Oxide/Carbon nanocomposites using the leaf extract of Adhatoda vasica Nees, their characterization and antimicrobial activity". Heliyon. 6 (2): e03323. 10.1016/j.heliyon.2020.e03323.

[12] C. Mallikarjunaswamy, J. S. Vidya, H. N. Deepakumari, G. Nagaraju, M. A. Sangamesha, and V. Lakshmi Ranganatha. (2022). "Larvicidal and antimicrobial activity of zinc oxide nanoparticles synthesized from rain tree pod aqueous extract". Materials Today: Proceedings. 62 : 5083-5086. 10.1016/j.matpr.2022.02.422.

[13] A. Nigam, S. Saini, B. Singh, A. K. Rai, and S. J. Pawar. (2022). "Zinc doped magnesium ferrite nanoparticles for evaluation of biological properties viz antimicrobial, biocompatibility, and in vitro cytotoxicity". Materials Today Communications. 31. 10.1016/j.mtcomm.2022.103632.

[14] S. Zhang, L. Lin, X. Huang, Y.-G. Lu, D.-L. Zheng, Y. Feng, and L. Balan. (2022). "Antimicrobial Properties of Metal Nanoparticles and Their Oxide Materials and Their Applications in Oral Biology". Journal of Nanomaterials. 2022 : 1-18. 10.1155/2022/2063265.

[15] M. E. Abdel-Alim, K. Samaan, D. Guillaume, and H. Amla. (2023). "Green Synthesis of Silver Nanoparticles using Egyptian Date Palm (Phoenix dactylifera L.) Seeds and Their Antibacterial Activity Assessment". Bioactivities. 1 (1): 1-8. 10.47352/bioactivities.2963-654X.180.

[16] Z. Kolenc, T. Langerholc, G. Hostnik, M. Ocvirk, S. Stumpf, M. Pintaric, I. J. Kosir, A. Cerenak, A. Garmut, and U. Bren. (2022). "Antimicrobial Properties of Different Hop (Humulus lupulus) Genotypes". Plants (Basel). 12(1).  10.3390/plants12010120.

[17] K. Sak. (2023). "Role of Flavonoids as Potential Plant Fungicides in Preventing Human Carcinogenesis: A Short Communication". Bioactivities. 1 (2): 39-42. 10.47352/bioactivities.2963-654X.187.

[18] J. Gomez-Estaca, A. Aleman, M. E. Lopez-Caballero, G. C. Baccan, P. Montero, and M. C. Gomez-Guillen. (2019). "Bioaccessibility and antimicrobial properties of a shrimp demineralization extract blended with chitosan as wrapping material in ready-to-eat raw salmon". Food Chemistry. 276 : 342-349. 10.1016/j.foodchem.2018.10.031.

[19] V. C. Amador, C. A. D. Santos-Silva, L. M. B. Vilela, M. Oliveira-Lima, M. de Santana Rego, R. S. Roldan-Filho, R. L. Oliveira-Silva, A. B. Lemos, W. D. de Oliveira, J. R. C. Ferreira-Neto, S. Crovella, and A. M. Benko-Iseppon. (2021). "Lipid Transfer Proteins (LTPs)-Structure, Diversity and Roles beyond Antimicrobial Activity". Antibiotics (Basel). 10 (11). 10.3390/antibiotics10111281.

[20] B. Shang, S. Wang, L. Lu, H. Ma, A. Liu, A. Zupanic, L. Jiang, A. S. Elnawawy, and Y. Yu. (2022). "Poultry eggshell-derived antimicrobial materials: Current status and future perspectives". Journal of Environmental Management. 314 : 115096. 10.1016/j.jenvman.2022.115096.

[21] A. Jayakumar, S. Radoor, J. Karayil, I. C. Nair, S. Siengchin, J. Parameswaranpillai, and E. K. Radhakrishnan. (2022). In: "Polymer Based Bio-nanocomposites, Composites Science, and Technology". 87-102. 10.1007/978-981-16-8578-1_5.

[22] H. Salazar, P. M. Martins, B. Santos, M. M. Fernandes, A. Reizabal, V. Sebastian, G. Botelho, C. J. Tavares, J. L. Vilas-Vilela, and S. Lanceros-Mendez. (2020). "Photocatalytic and antimicrobial multifunctional nanocomposite membranes for emerging pollutants water treatment applications". Chemosphere. 250 : 126299. 10.1016/j.chemosphere.2020.126299.

[23] S. Sharifi, A. Zaheri Khosroshahi, S. Maleki Dizaj, and Y. Rezaei. (2021). "Preparation, Physicochemical Assessment and the Antimicrobial Action of Hydroxyapatite-Gelatin/Curcumin Nanofibrous Composites as a Dental Biomaterial". Biomimetics (Basel). 7 (1). 10.3390/biomimetics7010004.

[24] B. Liu, L. Mu, J. Zhang, X. Han, and H. Shi. (2020). "TiO(2)/Cu(2)(OH)(2)CO(3) nanocomposite as efficient antimicrobials for inactivation of crop pathogens in agriculture". Materials Science & Engineering C-Materials for Biological Applications. 107 : 110344. 10.1016/j.msec.2019.110344.

[25] L. Motelica, D. Ficai, A. Ficai, R. D. Trusca, C. I. Ilie, O. C. Oprea, and E. Andronescu. (2020). "Innovative Antimicrobial Chitosan/ZnO/Ag NPs/Citronella Essential Oil Nanocomposite-Potential Coating for Grapes". Foods. 9 (12).  10.3390/foods9121801.

[26] R. Amanda Firza, A. Ulfah, and S. Slamet. (2020). "Antibacterial activity of CaO from blood cockle shells (Anadara granosa) calcination against Escherichia coli". Biodiversitas Journal of Biological Diversity. 21 (6).  10.13057/biodiv/d210660.

[27] S. Aina, B. D. Plessis, V. Mjimba, and H. Brink. (2021). "Eggshell Valorization: Membrane Removal, Calcium Oxide Synthesis, and Biochemical Compound Recovery towards Cleaner Productions". Biointerface Research in Applied Chemistry. 12 (5): 5870-5883. 10.33263/briac125.58705883.

[28] E. M. Rivera, M. Araiza, W. Brostow, V. M. Castaño, J. R. Dı́az-Estrada, R. Hernández, and J. R. Rodrı́guez. (1999). "Synthesis of hydroxyapatite from eggshells". Materials Letters. 41 (3): 128-134. 10.1016/s0167-577x(99)00118-4.

[29] Y. S. Ok, S. S. Lee, W. T. Jeon, S. E. Oh, A. R. Usman, and D. H. Moon. (2011). "Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil". Environmental Geochemistry and Health. 33 Suppl 1 : 31-9. 10.1007/s10653-010-9362-2.

[30] F. Antolini, E. Burresi, L. Stroea, V. Morandi, L. Ortolani, G. Accorsi, and M. Blosi. (2012). "Time and Temperature Dependence of CdS Nanoparticles Grown in a Polystyrene Matrix". Journal of Nanomaterials. 2012: 1-11. 10.1155/2012/815696.

[31] K. Berent, S. Komarek, R. Lach, and W. Pyda. (2019). "The Effect of Calcination Temperature on the Structure and Performance of Nanocrystalline Mayenite Powders". Materials (Basel). 12 (21). 10.3390/ma12213476.

[32] A. K. Kushwaha, M. John, M. Misra, and P. L. Menezes. (2021). "Nanocrystalline Materials: Synthesis, Characterization, Properties, and Applications". Crystals. 11 (11). 10.3390/cryst11111317.

[33] L. K. Varga, É. Bakos, É. Kisdi-Koszó, É. Zsoldos, and L. F. Kiss. (1994). "Time and temperature dependence of nanocrystalline structure formation in a Finemet-type amorphous alloy". Journal of Magnetism and Magnetic Materials. 133 (1-3): 280-282. 10.1016/0304-8853(94)90546-0.

[34] R. Mohadi, K. Anggraini, F. Riyanti, and A. Lesbani. (2016). "Preparation Calcium Oxide From Chicken Eggshells". Sriwijaya Journal of Environment. 1 (2): 32-35. 10.22135/sje.2016.1.2.32-35.

[35] M. Ambrosi, L. Dei, R. Giorgi, C. Neto, and P. Baglioni. (2001). "Colloidal Particles of Ca(OH)2:  Properties and Applications to Restoration of Frescoes". Langmuir. 17 (14): 4251-4255. 10.1021/la010269b.

[36] Z. Mirghiasi, F. Bakhtiari, E. Darezereshki, and E. Esmaeilzadeh. (2014). "Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method". Journal of Industrial and Engineering Chemistry. 20 (1): 113-117. 10.1016/j.jiec.2013.04.018.

[37] S. Molinari, B. Swinyard, J. Bally, M. Barlow, J. P. Bernard, P. Martin, T. Moore, A. Noriega-Crespo, R. Plume, L. Testi, A. Zavagno, A. Abergel, B. Ali, P. André, J. P. Baluteau, M. Benedettini, O. Berné, N. P. Billot, J. Blommaert, S. Bontemps, F. Boulanger, J. Brand, C. Brunt, M. Burton, L. Campeggio, S. Carey, P. Caselli, R. Cesaroni, J. Cernicharo, S. Chakrabarti, A. Chrysostomou, C. Codella, M. Cohen, M. Compiegne, C. J. Davis, P. de Bernardis, G. de Gasperis, J. Di Francesco, A. M. di Giorgio, D. Elia, F. Faustini, J. F. Fischera, Y. Fukui, G. A. Fuller, K. Ganga, P. Garcia-Lario, M. Giard, G. Giardino, J. Glenn, P. Goldsmith, M. Griffin, M. Hoare, M. Huang, B. Jiang, C. Joblin, G. Joncas, M. Juvela, J. Kirk, G. Lagache, J. Z. Li, T. L. Lim, S. D. Lord, P. W. Lucas, B. Maiolo, M. Marengo, D. Marshall, S. Masi, F. Massi, M. Matsuura, C. Meny, V. Minier, M. A. Miville-Deschênes, L. Montier, F. Motte, T. G. Müller, P. Natoli, J. Neves, L. Olmi, R. Paladini, D. Paradis, M. Pestalozzi, S. Pezzuto, F. Piacentini, M. Pomarès, C. C. Popescu, W. T. Reach, J. Richer, I. Ristorcelli, A. Roy, P. Royer, D. Russeil, P. Saraceno, M. Sauvage, P. Schilke, N. Schneider-Bontemps, F. Schuller, B. Schultz, D. S. Shepherd, B. Sibthorpe, H. A. Smith, M. D. Smith, L. Spinoglio, D. Stamatellos, F. Strafella, G. Stringfellow, E. Sturm, R. Taylor, M. A. Thompson, R. J. Tuffs, G. Umana, L. Valenziano, R. Vavrek, S. Viti, C. Waelkens, D. Ward-Thompson, G. White, F. Wyrowski, H. W. Yorke and Q. Zhang. (2010). "Hi-GAL: The Herschel Infrared Galactic Plane Survey". Publications of the Astronomical Society of the Pacific. 122 (889): 314-325. 10.1086/651314.

[38] N. Razali, M. A. Azizan, K. F. Pa'ee, N. Razali, and N. Jumadi. (2020). "Preliminary studies on calcinated chicken eggshells as fine aggregates replacement in conventional concrete". Materials Today: Proceedings. 31 : 354-359. 10.1016/j.matpr.2020.06.232.

[39] A. Giacometti, O. Cirioni, F. Barchiesi, M. S. Del Prete, M. Fortuna, F. Caselli, and G. Scalise. (2000). "In vitro susceptibility tests for cationic peptides: comparison of broth microdilution methods for bacteria that grow aerobically". Antimicrobial Agents and Chemotherapy. 44 (6): 1694-6. 10.1128/AAC.44.6.1694-1696.2000.

[40] E. Nagy, L. Boyanova, U. S. Justesen, and E. S. G. o. A. Infections. (2018). "How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories". Clinical Microbiology and Infection. 24 (11): 1139-1148. 10.1016/j.cmi.2018.02.008.

[41] S. Ahmad Bhat, F. Zafar, A. Ullah Mirza, A. Hossain Mondal, A. Kareem, Q. Mohd. Rizwanul Haq, and N. Nishat. (2020). "NiO nanoparticle doped-PVA-MF polymer nanocomposites: Preparation, Congo red dye adsorption and antibacterial activity". Arabian Journal of Chemistry. 13 (6): 5724-5739. 10.1016/j.arabjc.2020.04.011.

[42] A. W. Bauer, W. M. M. Kirby, J. C. Sherris, and M. Turck. (1966). "Antibiotic Susceptibility Testing by a Standardized Single Disk Method". American Journal of Clinical Pathology. 45 (4_ts): 493-496. 10.1093/ajcp/45.4_ts.493.

[43] M. Ikram, T. Inayat, A. Haider, A. Ul-Hamid, J. Haider, W. Nabgan, A. Saeed, A. Shahbaz, S. Hayat, K. Ul-Ain, and A. R. Butt. (2021). "Graphene Oxide-Doped MgO Nanostructures for Highly Efficient Dye Degradation and Bactericidal Action". Nanoscale Research Letters. 16 (1): 56. 10.1186/s11671-021-03516-z.

[44] L. Cai, J. Chen, Z. Liu, H. Wang, H. Yang, and W. Ding. (2018). "Magnesium Oxide Nanoparticles: Effective Agricultural Antibacterial Agent Against Ralstonia solanacearum". Frontiers in Microbiology. 9 : 790. 10.3389/fmicb.2018.00790.

[45] F. Mohamed, M. Shaban, G. Aljohani, and A. M. Ahmed. (2021). "Synthesis of novel eco-friendly CaO/C photocatalyst from coffee and eggshell wastes for dye degradation". Journal of Materials Research and Technology. 14 : 3140-3149. 10.1016/j.jmrt.2021.08.055.

[47] N. R. Elejalde-Cadena, J. O. Estevez, V. Torres-Costa, M. D. Ynsa-Alcalá, G. García-López, and A. Moreno. (2021). "Molecular Analysis of the Mineral Phase and Examination of Possible Intramineral Proteins of Dinosaur Eggshells Collected in El Rosario, Baja California, Mexico". ACS Earth and Space Chemistry. 5 (6): 1552-1563. 10.1021/acsearthspacechem.1c00077.

[48] D. Xidaki, P. Agrafioti, D. Diomatari, A. Kaminari, E. Tsalavoutas-Psarras, P. Alexiou, V. Psycharis, E. C. Tsilibary, S. Silvestros, and M. Sagnou. (2018). "Synthesis of Hydroxyapatite, beta-Tricalcium Phosphate and Biphasic Calcium Phosphate Particles to Act as Local Delivery Carriers of Curcumin: Loading, Release and In Vitro Studies". Materials (Basel). 11 (4). 10.3390/ma11040595.

[49] H. Sitepu, B. H. O'Connor, and D. Li. (2005). "Comparative evaluation of the March and generalized spherical harmonic preferred orientation models using X-ray diffraction data for molybdite and calcite powders". Journal of Applied Crystallography. 38 (1): 158-167. 10.1107/s0021889804031231.

[50] W. Primak, H. Kaufman, and R. Ward. (2002). "X-Ray Diffraction Studies of Systems Involved in the Preparation of Alkaline Earth Sulfide and Selenide Phosphors1". Journal of the American Chemical Society. 70 (6): 2043-2046. 10.1021/ja01186a018.

[51] M. M. Hasan, E. Kisi, and H. Sugo. (2021). "Synthesis of nanostructured lanthanum hexaboride via simple borothermal routes at low temperatures". Ceramics International. 47 (20): 29295-29302. 10.1016/j.ceramint.2021.07.094.

[52] R. T. M. Situmeang, R. Supryanto, L. N. Albert Kahar, W. Simanjuntak, and S. Sembiring. (2017). "Characteristics of Nano-Size LaCrO3 Prepared Through Sol-Gel Route Using Pectin as Emulsifying Agent". Oriental Journal of Chemistry. 33 (04): 1705-1713. 10.13005/ojc/330415.

[53] C. Dong. (1999). "PowderX: Windows-95-based program for powder X-ray diffraction data processing". Journal of Applied Crystallography. 32 (4): 838-838. 10.1107/s0021889899003039.

[54] B. Maringgal, N. Hashim, I. S. M. A. Tawakkal, M. H. Hamzah, and M. T. M. Mohamed. (2020). "Biosynthesis of CaO nanoparticles using Trigona sp. Honey: Physicochemical characterization, antifungal activity, and cytotoxicity properties". Journal of Materials Research and Technology. 9 (5): 11756-11768. 10.1016/j.jmrt.2020.08.054.

[55] M. L. Granados, M. D. Z. Poves, D. M. Alonso, R. Mariscal, F. C. Galisteo, R. Moreno-Tost, J. Santamaría, and J. L. G. Fierro. (2007). "Biodiesel from sunflower oil by using activated calcium oxide". Applied Catalysis B: Environmental. 73 (3-4): 317-326. 10.1016/j.apcatb.2006.12.017.

[56] M. Kirubakaran and V. Arul Mozhi Selvan. (2021). "Experimental investigation on the effects of micro eggshell and nano-eggshell catalysts on biodiesel optimization from waste chicken fat". Bioresource Technology Reports.1410.1016/j.biteb.2021.100658.

[57] H. A. Jaber, R. S. Mahdi, and A. K. Hassan. (2020). "Influence of eggshell powder on the Portland cement mortar properties". Materials Today: Proceedings. 20 : 391-396. 10.1016/j.matpr.2019.09.153.

[58] K. Khairurrijal and M. Abdullah. (2016). "A Simple Method for Determining Surface Porosity Based on SEM Images Using OriginPro Software". Indonesian Journal of Physics. 20 (2): 37-40. 10.5614/itb.ijp.2009.20.2.4.

[59] K. K. Jaiswal, S. Dutta, C. B. Pohrmen, R. Verma, A. Kumar, and A. P. Ramaswamy. (2020). "Bio-waste chicken eggshell-derived calcium oxide for photocatalytic application in methylene blue dye degradation under natural sunlight irradiation". Inorganic and Nano-Metal Chemistry. 51 (7): 995-1004. 10.1080/24701556.2020.1813769.

[60] X. Yang and D. Wang. (2018). "Photocatalysis: From Fundamental Principles to Materials and Applications". ACS Applied Energy Materials. 1 (12): 6657-6693. 10.1021/acsaem.8b01345.

[61] M. Vaneechoutte, L. Dijkshoorn, A. Nemec, P. Kampfer, and G. Wauters. (2011). In: "Manual of Clinical Microbiology". 714-738. 10.1128/9781555816728.ch42.

[62] W. W. Navarre and O. Schneewind. (1994). "Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria". Molecular Microbiology. 14 (1): 115-21. 10.1111/j.1365-2958.1994.tb01271.x.

[63] W. W. Navarre and O. Schneewind. (1999). "Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope". Microbiology and Molecular Biology Reviews. 63 (1): 174-229. 10.1128/MMBR.63.1.174-229.1999.

[64] L. Chávez Guerrero, J. Garza-Cervantes, D. Caballero-Hernández, R. González-López, S. Sepúlveda-Guzmán, and E. Cantú-Cárdenas. (2017). "Synthesis and Characterization of Calcium Hydroxide Obtained from Agave Bagasse and Investigation of Its Antibacterial Activity". Revista Internacional de Contaminación Ambiental. 33 (2): 347-353. 10.20937/rica.2017.33.02.15.

[65] G. Jin, H. Qin, H. Cao, S. Qian, Y. Zhao, X. Peng, X. Zhang, X. Liu, and P. K. Chu. (2014). "Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium". Biomaterials. 35 (27): 7699-713. 10.1016/j.biomaterials.2014.05.074.

[66] R. Kaliyaperumal, V. K. Poovan, and P. Shanmugam. (2023). "Synthesis and antimicrobial activity of CuO@BaO/CaO nanocomposites using precipitation method". Journal of the Indian Chemical Society. 100 (1).  10.1016/j.jics.2022.100842.

[67] X. Zhang, M. Liu, Z. Kang, B. Wang, B. Wang, F. Jiang, X. Wang, D.-P. Yang, and R. Luque. (2020). "NIR-triggered photocatalytic/photothermal/photodynamic water remediation using eggshell-derived CaCO3/CuS nanocomposites". Chemical Engineering Journal. 388. 10.1016/j.cej.2020.124304.

Downloads

Published

2024-01-31

How to Cite

[1]
R. Djayasinga, R. T. M. Situmeang, F. Unob, S. Hadi, P. Manurung, and S. Sumardi, “Chicken Eggshell Powder as Antibacterial Against Staphylococcus aureus and Escherichia coli Through In Vitro Studies”, J. Multidiscip. Appl. Nat. Sci., vol. 4, no. 1, pp. 194-209, Jan. 2024.