Analisis Jalur Terdekat Menuju Bangunan Shelter Evakuasi Tsunami di Kota Padang Menggunakan Network Analyst

Authors

DOI:

https://doi.org/10.47134/ppm.v1i2.202

Keywords:

tsunami, the dijkstra’s algorithm, network analyst

Abstract

West Sumatra is one of the provinces in Indonesia that is prone to earthquakes due to the Great Sumatran Fault and the convergence of the Indo-Australian Plate and the Eurasian Plate beneath the sea to the west of the island of Sumatra. Padang is a city with earthquake potential due to the Semangko Fault, and one of the potential consequences is the occurrence of tsunamis. To minimize these impacts in Padang, tsunami evacuation buildings, known as shelters, have been established. Therefore, it is crucial for the community to be aware of the nearest routes to these evacuation shelters in Padang. One method employed is using Network Analyst. Network Analyst is a tool within the ArcGIS software, which is a Geographic Information System (GIS) developed by ESRI to manage, analyze, and visualize geographical data. By utilizing Network Analyst, the closest routes to the researched areas are generated. Network Analyst employs the Dijkstra's algorithm to solve routing problems and can be generated based on two criteria: distance and time. The result of the nearest route to the tsunami evacuation shelter in Batang Arau Subdistrict, South Padang District, is from SDN 29 Pebayan Penggalangan to Nurul Iman Mosque Padang, spanning a distance of 1585 meters. The analysis of the nearest route using Network Analyst is then compared with manually calculated results using the Dijkstra's algorithm. The difference between manual calculations and Network Analyst results ranges from 1 to 4 meters, approaching reality. This information can serve as a reference for determining the nearest routes to evacuation shelters in the event of a tsunami in Padang.

References

Ariyanti, S. D. (2013). Site Selection and Transportation Routes of Tsunami Emergency Logistic Warehouse Assessment Using (GIS) in Cilacap Regency, Central Java Province, Indoneisa. Thesis UGM, 1-116.

Bhattacharya, Y. (2021). Spatial hedonic analysis to support tourism-sensitive tsunami mitigation planning. International Journal of Disaster Risk Reduction, 60. https://doi.org/10.1016/j.ijdrr.2021.102283 DOI: https://doi.org/10.1016/j.ijdrr.2021.102283

Budiarjo, A. (2006). Evacuation Shelter Building Planning for Tsunami-prone Area; a Case Study of Meulaboh City, Indonesia. Tesis. University of Twente (NL), Enschede.

Costa, R. De. (2020). Pohutukawa bio-shield on the coast of New Zealand as a tsunami mitigation strategy. European Journal of Environmental and Civil Engineering, 24(12), 1955–1966. https://doi.org/10.1080/19648189.2018.1494635 DOI: https://doi.org/10.1080/19648189.2018.1494635

Haiqal, M. (2019). A review of vertical evacuation on tsunami mitigation case. IOP Conference Series: Materials Science and Engineering, 523(1). https://doi.org/10.1088/1757-899X/523/1/012061 DOI: https://doi.org/10.1088/1757-899X/523/1/012061

Hettiarachchi, S. (2018). Establishing the Indian Ocean Tsunami Warning and Mitigation System for human and environmental security. Procedia Engineering, 212, 1339–1346. https://doi.org/10.1016/j.proeng.2018.01.173 DOI: https://doi.org/10.1016/j.proeng.2018.01.173

Koyama, C. N. (2019). Advanced Polarimetric Stereo-Sar for Tsunami Debris Estimation and Disaster Mitigation. International Geoscience and Remote Sensing Symposium (IGARSS), 4837–4840. https://doi.org/10.1109/IGARSS.2019.8898619 DOI: https://doi.org/10.1109/IGARSS.2019.8898619

Lunghino, B. (2020). The protective benefits of tsunami mitigation parks and ramifications for their strategic design. Proceedings of the National Academy of Sciences of the United States of America, 117(20), 10740–10745. https://doi.org/10.1073/pnas.1911857117 DOI: https://doi.org/10.1073/pnas.1911857117

NICOARĂ, P.-S., & HAIDU, I. (2014). A GIS Based Network Analysis for the Identification of Shortest Route Access to Emergency Medical Facilities. Geographia Technica, 60-67.

Pasha, G. A. (2018). Tsunami mitigation by combination of coastal vegetation and a backward-facing step. Coastal Engineering Journal, 60(1), 104–125. https://doi.org/10.1080/21664250.2018.1437014 DOI: https://doi.org/10.1080/21664250.2018.1437014

Prabu, P. (2019). Numerical investigations for mitigation of tsunami wave impact on onshore buildings using sea dikes. Ocean Engineering, 187. https://doi.org/10.1016/j.oceaneng.2019.106159 DOI: https://doi.org/10.1016/j.oceaneng.2019.106159

Prabu, P. (2022). Three-dimensional numerical simulations for mitigation of tsunami wave impact using intermittent sea dikes. Ocean Engineering, 261. https://doi.org/10.1016/j.oceaneng.2022.112112 DOI: https://doi.org/10.1016/j.oceaneng.2022.112112

Pramudya, R., & Subiyanto. (2015). Penggunaan Algoritma Dijkstra dalam Perencanaan Rute Evakuasi Bencana Longsor di Kota Semarang. Journal of Geomatics and Planning, 93-102. DOI: https://doi.org/10.14710/geoplanning.2.2.93-102

Saleh, D. F., Baeda, A. Y., & Rahman, S. (2022). Skema Mitigasi Tsunami Mendatang di Pelabuhan Garongkong, Barru, Sulawesi Selatan. Makassar: Jurnal Riiset & Teknologi Terapan Kemaritiman.

Sari, D. R. (2010). A-GIS based approach to the selection of evacuation shelterbuildings and routes for tsunami risk reduction : a Case Study of Cilacap Coastal Area, Indonesia. [thesis]. Yogyakarta: Universitas Gadjah Mada.

Savinotes. (2018, Agustus 24). Network Analysis/Analisis Jaringan. Retrieved Maret 4, 2023, from savinotes.wordpress.com/2018/08/24/analisis-jaringan-network-analysis/

Shuto, N. (2019). Tsunami hazard mitigation. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 95(4), 151–164. https://doi.org/10.2183/pjab.95.012 DOI: https://doi.org/10.2183/pjab.95.012

STEKOM. (2021). Geografi Kota Padang. Padang: Ensiklopedia Dunia. Retrieved February 25, 2021, from Ensiklopedia Dunia: https://p2k.stekom.ac.id/ensiklopedia/Geografi_Kota_Padang

Suprapto, N. (2022). Global Research On Tsunami Education And Tsunami Mitigation: A Bibliometric Analysis. Science of Tsunami Hazards, 41(2), 130–148.

Syamsidik. (2019). Assessing the tsunami mitigation effectiveness of the planned Banda Aceh Outer Ring Road (BORR), Indonesia. Natural Hazards and Earth System Sciences, 19(1), 299–312. https://doi.org/10.5194/nhess-19-299-2019 DOI: https://doi.org/10.5194/nhess-19-299-2019

Syamsidik. (2021). Fifteen years of the 2004 Indian Ocean Tsunami in Aceh-Indonesia: Mitigation, preparedness and challenges for a long-term disaster recovery process. International Journal of Disaster Risk Reduction, 54. https://doi.org/10.1016/j.ijdrr.2021.102052 DOI: https://doi.org/10.1016/j.ijdrr.2021.102052

Tanaka, N. (2021). Numerical investigation of the effectiveness of vegetation-embankment hybrid structures for tsunami mitigation introduced after the 2011 Tsunami. Geosciences (Switzerland), 11(11). https://doi.org/10.3390/geosciences11110440 DOI: https://doi.org/10.3390/geosciences11110440

Thomas, B. E. O. (2021). A low-cost toolbox for high-resolution vulnerability and hazard-perception mapping in view of tsunami risk mitigation: Application to New Caledonia. International Journal of Disaster Risk Reduction, 62. https://doi.org/10.1016/j.ijdrr.2021.102350 DOI: https://doi.org/10.1016/j.ijdrr.2021.102350

Thompson, C. (2021). From tragedy to triumph: tsunami mitigation and Bōsai (disaster prevention) tourism in Tarō, Japan. Asian Anthropology, 20(4), 231–247. https://doi.org/10.1080/1683478X.2021.1943158 DOI: https://doi.org/10.1080/1683478X.2021.1943158

Torita, H. (2022). Effective management of Japanese black pine (Pinus thunbergii Parlat.) coastal forests considering tsunami mitigation. Journal of Environmental Management, 311. https://doi.org/10.1016/j.jenvman.2022.114754 DOI: https://doi.org/10.1016/j.jenvman.2022.114754

Umeda, S. (2018). Mitigation effects of onshore perforated barriers on inundation and forces induced by tsunami and tsunami-driven objects. Ocean Engineering, 152, 89–99. https://doi.org/10.1016/j.oceaneng.2018.01.051 DOI: https://doi.org/10.1016/j.oceaneng.2018.01.051

Usman, F. (2019). Information and communication technology in tsunami disaster mitigation related to evacuation. Disaster Advances, 12(3), 1–5.

Xu, Z. (2021). Mitigation of tsunami bore impact on a vertical wall behind a barrier. Coastal Engineering, 164. https://doi.org/10.1016/j.coastaleng.2020.103833 DOI: https://doi.org/10.1016/j.coastaleng.2020.103833

Yang, W. (2018). Study on tsunami force mitigation of the rear house protected by the front house. Ocean Engineering, 159, 268–279. https://doi.org/10.1016/j.oceaneng.2018.04.034 DOI: https://doi.org/10.1016/j.oceaneng.2018.04.034

Zaitunah, A. (2018). Analysis of Greenbelt in Sibolga for Tsunami Mitigation. IOP Conference Series: Earth and Environmental Science, 166(1). https://doi.org/10.1088/1755-1315/166/1/012028 DOI: https://doi.org/10.1088/1755-1315/166/1/012028

Zhang, M. (2020). Numerical investigation on tsunami wave mitigation on forest sloping beach. Acta Oceanologica Sinica, 39(1), 130–140. https://doi.org/10.1007/s13131-019-1527-y DOI: https://doi.org/10.1007/s13131-019-1527-y

Downloads

Published

2023-12-18

How to Cite

Shabrina, N., & Ahmad, D. (2023). Analisis Jalur Terdekat Menuju Bangunan Shelter Evakuasi Tsunami di Kota Padang Menggunakan Network Analyst. Jurnal Pendidikan Matematika, 1(2), 13. https://doi.org/10.47134/ppm.v1i2.202

Issue

Section

Articles