We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Drug repurposing of adapalene for melanoma treatment

    Maricruz Anaya-Ruiz

    Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, CP, 74360, México

    &
    Martin Perez-Santos

    *Author for correspondence:

    E-mail Address: martin.perez@correo.buap.mx

    Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla, CP, 72570, México

    Published Online:https://doi.org/10.4155/ppa-2021-0021

    Cancer drug repurposing is an attractive approach that leads to savings in time and investment. Adapalene, the first medical application of which was for the treatment of acne, has been described as a repurposing drug for the treatment of various types of cancer. Patent application CN111329851 describes the use of adapalene for the treatment of melanoma, by assays carried out on melanoma cell lines. Adapalene demonstrated antiproliferative activity in melanoma cell lines via S-phase arrest-dependent apoptosis mediated by DNA damage through an increase in the expression of p-ATM and p-chk2 and a decrease in the expression of p-BRCA1 and Rad51. Even though no evidence on efficacy and efficiency is shown in preclinical and clinical studies, CN111329851 patent shows that adapalene may be a repurposing drug for the treatment of melanoma.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33 (2016).
    • 2. Nosengo N. New tricks for old drugs: faced with skyrocketing costs for developing new drugs, researchers are looking at ways to repurpose older ones – and even some that failed in initial trials. Nature 534(7607), 314–317 (2016).
    • 3. Pfab C, Schnobrich L, Eldnasoury S et al. Repurposing of antimicrobial agents for cancer therapy: what do we know? Cancers 13(13), 3193 (2021).
    • 4. Ahmed ZSO, Golovoy M, Abdullah Y et al. Repurposing of metformin for cancer therapy: updated patent and literature review. Recent Pat. Anticancer Drug Discov. 16(2), 161–186 (2021).
    • 5. Amare GG, Meharie BG, Belayneh YM. A drug repositioning success: the repositioned therapeutic applications and mechanisms of action of thalidomide. J. Oncol. Pharm. Pract. 27(3), 673–678 (2021).
    • 6. Correia AS, Gärtner F, Vale N. Drug combination and repurposing for cancer therapy: the example of breast cancer. Heliyon 7(1), e05948 (2021). • Discusses some relevant aspects of cancer and particularly, drug combination and repurposing in breast cancer therapy.
    • 7. Nunes M, Henriques Abreu M, Bartosch C et al. Recycling the purpose of old drugs to treat ovarian cancer. Int. J. Mol. Sci. 21(20), 7768 (2020). •• Discusses the current knowledge on the most promising nononcological drugs for ovarian cancer treatment, focusing on statins, metformin, bisphosphonates, ivermectin, itraconazole and ritonavir.
    • 8. Murray JC, Levy B. Repurposed drugs trials by cancer type: lung cancer. Cancer J. 25(2), 127–133 (2019).
    • 9. Rebelo R, Polónia B, Santos LL et al. Drug repurposing opportunities in pancreatic ductal adenocarcinoma. Pharmaceuticals 14(3), 280 (2021). •• Gives an overview of the main drugs that have been investigated as repurposing candidates, for the potential treatment of pancreatic ductal adenocarcinoma, in preclinical studies and clinical trials.
    • 10. Cortes H, Reyes-Hernandez OD et al. Repurposing of drug candidates for treatment of skin cancer. Front. Oncol. 10, 605714 (2021).
    • 11. Urquhart L. Top drugs and companies by sales in 2018. Nat. Rev. Drug Discov. 18, 245 (2019).
    • 12. Shroot B, Eustache J, Bernardon J-M: EP-0199636 (1986).
    • 13. Orsoni S, Willcox N. US7820186 (2010).
    • 14. Graeber M, Czernielewski J. US7737181 (2010).
    • 15. Graeber M, Czernielewski J. US7838558 (2010).
    • 16. Graeber M, Czernielewski J. US7834060 (2010).
    • 17. Graeber M, Czernielewski J. US7579377 (2009).
    • 18. Orsoni S, Willcox N. US7964202 (2011).
    • 19. Orsoni S, Willcox N. US8105618 (2012).
    • 20. Graeber M, Czernielewski J. US7868044 (2011).
    • 21. Graeber M, Czernielewski J. US8703820 (2014).
    • 22. Chacra Vernet MLA, Gross D, Loesche Ch et al. US8129362 (2012).
    • 23. Chacra Vernet MLA, Gross D, Loesche Ch et al. US8080537 (2011).
    • 24. Chacra Vernet MLA, Gross D, Loesche Ch et al. US8445543 (2013).
    • 25. Chacra Vernet MLA, Gross D, Loesche Ch et al. US8785420 (2014).
    • 26. Graeber M, Liu Y, Gore B. US8809305 (2014).
    • 27. Graeber M, Czernielewski J. US9381179 (2016).
    • 28. Emmerich VK, Purvis CG, Feldman SR. An overview of adapalene and benzoyl peroxide once-daily topical gel as a therapeutic option for acne. Expert Opin. Pharmacother. 22(13) 1661–1667 (2021).
    • 29. Rusu A, Tanase C, Pascu GA et al. Recent advances regarding the therapeutic potential of adapalene. Pharmaceuticals 13(9), 217 (2020).
    • 30. Ocker M, Herold C, Ganslmayer M et al. The synthetic retinoid adapalene inhibits proliferation and induces apoptosis in colorectal cancer cells in vitro. Int. J. Cancer Res. 107(3), 453–459 (2003).
    • 31. Shi XN, Li H, Yao H et al. Adapalene inhibits the activity of cyclin-dependent kinase 2 in colorectal carcinoma. Mol. Med. Rep. 12(5), 6501–6508 (2015).
    • 32. DiSilvestro PA, DiSilvestro JM, Lernhardt W et al. Treatment of cervical intraepithelial neoplasia levels 2 and 3 with adapalene, a retinoid-related molecule. J. Low. Genit. Tract Dis. 5(1), 33–37 (2001).
    • 33. Ocker M, Herold C, Ganslmayer M et al. Potentiated anticancer effects on hepatoma cells by the retinoid adapalene. Cancer Lett. 208(1), 51–58 (2004).
    • 34. Wang Q, Zhang Q, Luan S et al. Adapalene inhibits ovarian cancer ES-2 cells growth by targeting glutamic-oxaloacetic transaminase 1. Bioorg. Chem. 93, 103315 (2019).
    • 35. Wang C, Li H, Ma P et al. The third-generation retinoid adapalene triggered DNA damage to induce S-phase arrest in HaCat cells. Fundam. Clin. Pharmacol. 34(3), 380–388 (2020).
    • 36. Ma P, Li H, Wang C. CN111329851 (2020).
    • 37. Tang XH, Gudas LJ. Retinoids, retinoic acid receptors, and cancer. Annu. Rev. Pathol. 6, 345–364 (2011).
    • 38. di Martino O, Welch JS. Retinoic acid receptors in acute myeloid leukemia therapy. Cancers 11(12), 1915 (2019).
    • 39. Li H, Wang C, Li L et al. Adapalene suppressed the proliferation of melanoma cells by S-phase arrest and subsequent apoptosis via induction of DNA damage. Eur. J. Pharmacol. 851, 174–185 (2019).
    • 40. Pfahl M, Lu X-P, Rideout D et al. US6127415 (2000).
    • 41. Lin T-H. 20160113895 (2016).
    • 42. Malhotra G, Joshi K. US20200170983 (2020).