Structural and Electronic Properties of Ag-Doped in Ba-Site of YBa2-xAgxCu3Oδ Using Density Functional Theory via First Principle Study

Article Preview

Abstract:

This study reports on the First Principle Study via Density Functional Theory (DFT) used to determine the structural and electronic properties of Ag-dopant in Ba-site of YBa2-xAgxCu3Oδ superconductor. The computational method adopting CASTEP computational code was used to calculate the structural and electronic properties for Ag-dopant in range of x=0.150 to x=0.250 in Ba-site of YBa2-xAgxCu3Oδ to enhance the performance finding of experimental work shown at dopant x=0.20 ceramic superconductor. The structural changes in terms of lattice parameters were compared as the percentage of dopant increases to seek both CuO chain and CuO2 plane bond length and the spontaneous strain variance on the structure orthorhombicity. The crystal structure constructed and calculated using Visual Crystal Approximation (VCA) applying the local density approximation (LDA) and ultrasoft pseuodopotential. Geometry optimization shown energy converged at 400 eV with k-point sampling of 4x4x1. The structural properties of YBa2-xAgxCu3Oδ are observed to be approximately close to the experimental data obtained by other researches. The electronic properties were determined via energy band gap, density of states and electron energy differences visualisation a to further enhance the experimental findings.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

549-555

Citation:

Online since:

May 2021

Export:

Price:

* - Corresponding Author

[1] N.W Ashcroft, N.D. Mermin, Solid State Physics, Thomson Learning, Inc., New Delhi, India, 1976, p.726–753.

Google Scholar

[2] H. Azhan, F. Fariesha, S.Y.S. Yusainee, K. Azman, S. Khalida, Superconducting properties of Ag and Sb substitution on Low-Density YBa2Cu3Oδ Superconductor, J. Supercond. Nov. Magn. 26 (2013) 931-935.

DOI: 10.1007/s10948-012-2020-4

Google Scholar

[3] F.F. Ramli, N.A. Wahab, H. Azhan, Microstructure and superconducting properties of Ag-Substituted YBa2-xAgxCu3O7-δ Ceramics Prepared by Sol-Gel Method, Malaysian Journal of Fundamental and Applied Sciences 13(2) (2017) 82-85.

DOI: 10.11113/mjfas.v13n2.655

Google Scholar

[4] T. Metin, M. Tepe, The Effect of Ag Doping on the Superconducting Properties of Y3Ba5Cu8−xAgxO18−δ Ceramics, J. Supercond. Nov. Magn. 30(4) (2017) 1083-1087.

DOI: 10.1007/s10948-016-3768-8

Google Scholar

[5] A.W. Norazidah, H. Azhan, A. Kasim, H.N. Hidayah, J.S. Hawa, Effect of Heat Treatment on Ca Substitution in a Porous Y(Ba1-xCax)2Cu3O7-δ Superconductor, Advanced Materials Research 895 (2014) 71-74.

DOI: 10.4028/www.scientific.net/amr.895.71

Google Scholar

[6] S. Ezzatpour, L. Sharifzadegan, F. Sarvari, H. Sedghi, Investigation of Pb Doping on Electrical, Structural and Superconducting Properties of YBa2-xPbxCu3O7-δ Superconductors, Physica C: Superconductivity and its Applications 549 (2018) 150-153.

DOI: 10.1016/j.physc.2018.02.023

Google Scholar

[7] R. Terzioglu, G. Aydin, N. S. Koc, C. Terzioglu, Investigation of the Structural, Magnetic and Electrical Properties of the Au Doped YBCO Superconductors,  Journal of Materials Science: Materials in Electronics 30(3) (2019) 2265-2277.

DOI: 10.1007/s10854-018-0497-8

Google Scholar

[8] L. Sharifzadegan, H. Sedghi, Investigation of Sm Substitution on Structural and Superconducting Properties of Y1Ba2−xSmxCu3O7−δ Superconductors, Physica C: Superconductivity and its Applications 550 (2018) 7-9.

DOI: 10.1016/j.physc.2018.02.026

Google Scholar

[9] B. Mundet, R. Guzmán, E. Bartolomé, A. R. Lupini, S. Hartman, R. Mishra, J. Gázquez, An Atomic-Scale Perspective of the Challenging Microstructure of YBa2Cu3O7−x Thin Films, in: P. Mele, K. Prassides, C. Tarantini, A. Palau, P. Badica, A. K. Jha, T. Endo, Superconductivity, Springer, Cham, 2020, pp.189-212.

DOI: 10.1007/978-3-030-23303-7_7

Google Scholar

[10] C.M. Cheong, M.M. Rahman, A.H. Shaari, S.K. Chen, Charge Distribution in YBa2Cu3O7 and YBa2Cu4O8 by Density Functional Theory, Materials Science Forum 846 (2016) 561-566.

Google Scholar

[11] M. D Segall, P.J.D.L., M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-Principles Simulation: Ideas, Illustrations and the CASTEP Code, J. Phys.: Condens. Matter 14 (2002) 2717-2745.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[12] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, M.I.K. Refson, K.M.C. Payne, First Principles Methods using CASTEP, Zeitschrift für Kristallographie-Crystalline Materials 220 (2005) 567-570.

DOI: 10.1524/zkri.220.5.567.65075

Google Scholar

[13] M.M. Zadeh, H. Khosroabadi, H. Akbarzadeh, M. Akhavan, Electronic Properties of YBa2Cu3O7 using Pseudopotential-Density Functional Approach with LDA and GGC, Magnetic and Superconducting Materials 1 (2000) 251-258.

DOI: 10.1142/9789812793676_0031

Google Scholar

[14] A. Tavana, M. Akhavan, How Tc can go Above 100K in the YBCO Family, The European Physical Journal B 73(1) (2010) 79-83.

DOI: 10.1140/epjb/e2009-00396-7

Google Scholar

[15] P. Love, Orbital Approach to High Temperature Superconductivity, Natural Science 11(1) (2019) 1-7.

Google Scholar

[16] C.E. Matt, D. Sutter, A.M. Cook, Y. Sassa, M. Månsson, O. Tjernberg, K. Hauser, Direct Observation of Orbital Hybridisation in a Cuprate Superconductor, Nature Communications 9(972) (2018) 1-7.

DOI: 10.1038/s41467-018-03266-0

Google Scholar