Effect of Mechanical Agitation on Cr-Al2O3 Nanocomposite Coatings Fabricated from Trivalent Chromium Electrodeposition

Article Preview

Abstract:

In the present work, Cr-Al2O3 nanocomposite coatings were electrodeposited onto a copper substrate using a modified trivalent chromium electroplating bath with the addition of 80nm Al2O3 powder. The effects of mechanical agitation of electrodeposition bath on Al2O3 particles dispersion and particles embedment were studied. The Cr-Al2O3 nanocomposite samples were subjected to different tests to characterize their surface morphology, crystalline structure, and mechanical properties. The crystalline structure, composition and surface morphology of the deposits were studied by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) and field emission scanning electron microscopy (FESEM). The corrosion resistance test was carried out by electrochemical polarization method. The microhardness was studied via Vickers Microhardness Test. The variation in the microhardness as a main property to achieve enhancement of Al2O3 incorporations with Cr matrix. From the EDX analysis, Cr-Al2O3 nanocomposite deposited at 200 rpm stirring speed showed the highest weight percentage (wt%) of alumina. The hardness results showed the Cr-Al2O3 composite coating has the best performance at 200 rpm stirring speed which the hardness increased 32.3 % compared to that of Cr coating. The corrosion current density (icorr) of Cr-Al2O3 coating achieved highest value at 200 rpm. This result revealed that the corrosion resistance of Cr-Al2O3 coating decreases with increasing Al2O3 particles content.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

506-514

Citation:

Online since:

May 2021

Export:

Price:

* - Corresponding Author

[1] G. Hong, K. S. Siow, G. Zhiqiang, A. K. Hsieh, Hard chromium plating from trivalent chromium solution, Plating Surf. Finish. 88(3) (2001) 69-75.

Google Scholar

[2] Y. B. Song, D. T. Chin, Current efficiency and polarization behavior of trivalent chromium electrodeposition process, Electrochim. Acta 48(4) (2002) 349-356.

DOI: 10.1016/s0013-4686(02)00678-3

Google Scholar

[3] V.S. Protsenko, F.I. Danilov, V.O. Gordiienko, S.C. Kwon, M. Kim, J.Y. Lee, Electrodeposition of hard nanocrystalline chrome from aqueous sulfate trivalent chromium bath, Thin Solid Films 520 (1) (2011) 380-383.

DOI: 10.1016/j.tsf.2011.07.036

Google Scholar

[4] C.A. Huang, Y.W. Liu, C. Yu, C.C. Yang, Role of carbon in the chromium deposit electroplated from a trivalent chromium-based bath, Surf. Coat. Technol. 205(11) (2011) 3461-3466.

DOI: 10.1016/j.surfcoat.2010.12.010

Google Scholar

[5] C.E. Lu, J.L. Lee, H.H. Sheu, K.H. Hou, C.C. Tseng, M.D. Ger, Preparation and Characterizations of High Carbon Content Cr-C Coatings Electroplated from a Trivalent Chromium-Based Bath, Int. J. Electrochem. Sci. 10 (2015) 5405-5419.

Google Scholar

[6] H.H. Sheu, M.H. Lin, S.Y. Jian, T.Y. Hong, K.H. Hou, M.D. Ger, Improve the mechanical properties and wear resistance of Cr-C thin films by adding Al2O3 particles, Surf. Coat. Technol. 350 (2018) 1036-1044.

DOI: 10.1016/j.surfcoat.2018.02.069

Google Scholar

[7] M.A. Juneghani, M. Farzam, H. Zohdirad, Wear and corrosion resistance and electroplating characteristics of electrodeposited Cr–SiC nano-composite coatings, Trans. Nonferrous Met. Soc. China 23(7) (2013) 1993-2001.

DOI: 10.1016/s1003-6326(13)62688-6

Google Scholar

[8] M.R. Vaezi, S.K. Sadrnezhaad, L. Nikzad, Electrodeposition of Ni–SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics, Colloids Surf. A: Physicochem. Eng. Asp. 315(1-3) (2008) 176-182.

DOI: 10.1016/j.colsurfa.2007.07.027

Google Scholar

[9] S. Mahdavi, S.R. Allahkaram, Composition, characteristics and tribological behavior of Cr, Co–Cr and Co–Cr/TiO2 nano-composite coatings electrodeposited from trivalent chromium based baths, J. Alloys Compd. 635 (2015) 150-157.

DOI: 10.1016/j.jallcom.2015.02.119

Google Scholar

[10] D. Zhao, X. Jiang, Y. Wang, W. Duan, L. Wang, Microstructure evolution, wear and corrosion resistance of CrC nanocomposite coatings in seawater, Appl. Surf. Sci. 457 (2018) 914-924.

DOI: 10.1016/j.apsusc.2018.06.248

Google Scholar

[11] A. Bund, D. Thiemig, Influence of bath composition and pH on the electrocodeposition of alumina nanoparticles and nickel, Surf. Coat. Technol. 201(16-17) (2007) 7092-7099.

DOI: 10.1016/j.surfcoat.2007.01.010

Google Scholar

[12] C.T.J. Low, R.G.A. Wills, F.C. Walsh, Electrodeposition of composite coatings containing nanoparticles in a metal deposit, Surf. Coat. Technol. 201(1-2) (2006) 371-383.

DOI: 10.1016/j.surfcoat.2005.11.123

Google Scholar

[13] E. Tey, M. Hashim, I. Ismail, Characterization of Cu-Al2O3 and Ni-Al2O3 nanocomposites electrodeposited on copper substrate, Mater. Sci. Forum. 846 (2016) 471-478.

DOI: 10.4028/www.scientific.net/msf.846.471

Google Scholar

[14] F.I. Danilov, V.S. Protsenko, V.O. Gordiienko, S.C. Kwon, J.Y. Lee, M. Kim, Nanocrystalline hard chromium electrodeposition from trivalent chromium bath containing carbamide and formic acid: structure, composition, electrochemical corrosion behavior, hardness and wear characteristics of deposits, Appl. Surf. Sci. 257(18) (2011) 8048-8053.

DOI: 10.1016/j.apsusc.2011.04.095

Google Scholar

[15] S. Ghaziof, M.A. Golozar, K. Raeissi, Characterization of as-deposited and annealed Cr–C alloy coatings produced from a trivalent chromium bath, J. Alloys Compd. 496(1-2) (2010) 164-168.

DOI: 10.1016/j.jallcom.2010.02.101

Google Scholar

[16] J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size, J. Appl. Crystallogr. 11(2) (1978) 102-113.

DOI: 10.1107/s0021889878012844

Google Scholar

[17] S.C. Kwon, M. Kim, S.U. Park, D.Y. Kim, D. Kim, K.S. Nam, Y. Choi, Characterization of intermediate Cr-C layer fabricated by electrodeposition in hexavalent and trivalent chromium baths, Surf. Coat. Technol. 183(2-3) (2004) 151-156.

DOI: 10.1016/j.surfcoat.2003.09.069

Google Scholar

[18] F.I. Danilov, V.S. Protsenko, T.E. Butyrina, E.A. Vasil'eva, A.S. Baskevich, Electroplating of chromium coatings from Cr (III)-based electrolytes containing water soluble polymer, Prot. Met. 42(6) (2006) 560-569.

DOI: 10.1134/s0033173206060075

Google Scholar

[19] V.S. Protsenko, V.O. Gordiienko, F.I. Danilov, Unusual" chemical" mechanism of carbon co-deposition in Cr-C alloy electrodeposition process from trivalent chromium bath, Electrochem. Commun. 17 (2012) 85-87.

DOI: 10.1016/j.elecom.2012.02.013

Google Scholar

[20] C.A. Huang, Y.W. Liu, C.H. Chuang, The hardening mechanism of a chromium–carbon deposit electroplated from a trivalent chromium-based bath, Thin Solid Films 517(17) (2009) 4902-4904.

DOI: 10.1016/j.tsf.2009.03.188

Google Scholar

[21] J. Foster, B. Cameron, The effect of current density and agitation on the formation of electrodeposited composite coatings, Trans. IMF. 54(1) (1976) 178-183.

DOI: 10.1080/00202967.1976.11870395

Google Scholar