Cellulose Nanofiber as Potential Absorbent Material for Chloride Ion

Article Preview

Abstract:

A simple, low cost and rapid analytical method for determination of HCl concentration after being treated with cellulose and cellulose nanofibers (CNF) is developed. This method is based on color intensity after the HCl solution is doped with sodium iodide (NaI). The color of HCl solution changes from colorless to yellow. The intensity of the color is measured by UV – Visible spectroscopy. The UV-Visible spectra of 0.15 M HCl treated with cellulose and cellulose nanofibers is reduced from its initial concentration. The CNF absorption capacity is higher as compared to cellulose. FT-IR analysis showed that there is interaction between C-H group from the CNF backboned and chloride ion from HCl solution.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

263-269

Citation:

Online since:

May 2021

Export:

Price:

* - Corresponding Author

[1] S. Ummartyotin, H. Manuspiya, A critical review on cellulose : From fundamental to an approach on sensor technology, Renew. Sustain. Energy Rev. 41 (2015) 402–412.

DOI: 10.1016/j.rser.2014.08.050

Google Scholar

[2] V.C. Li, M. Lepech, S. Wang, Development of green engineered cementitious composites for sustainable infrastructure systems, Int. Work. Sustain. Dev. Concr. Technol. 1 (2004) 181–191.

Google Scholar

[3] A.H. Shaffie, M.S.M. Misenan, M.I.N. Isa, A.S.A. Khiar, Effect of Ionic Liquid BMIMNO3 to Chitosan-Starch Blend Biopolymer Electrolyte System, Solid State Phenom. 290 (2019) 177–182.

DOI: 10.4028/www.scientific.net/ssp.290.177

Google Scholar

[4] A.S.A. Khiar, R. Puteh, A.K. Arof, Characterizations of chitosan-ammonium triflate (NH4CF3so3) complexes by FTIR and impedance spectroscopy, Phys. Status Solidi Appl. Mater. Sci. 203(3) (2006) 534–543.

DOI: 10.1002/pssa.200521016

Google Scholar

[5] M.S.M. Misenan, E.S. Ali, A.S.A. Khiar, Conductivity, dielectric and modulus study of chitosan-methyl cellulose – BMIMTFSI polymer electrolyte doped with cellulose nano crystal, AIP Conference Proceedings 1972 (2018) 030010.

DOI: 10.1063/1.5041231

Google Scholar

[6] E.K. Silva, G.L. Zabot, C.B.B. Cazarin, M.R. Maróstica, M.A.A. Meireles, Biopolymer-prebiotic carbohydrate blends and their effects on the retention of bioactive compounds and maintenance of antioxidant activity, Carbohydr. Polym. 144 (2016) 149–58.

DOI: 10.1016/j.carbpol.2016.02.045

Google Scholar

[7] R. Singh, N.A. Jadhav, S. Majumder, B. Bhattacharya, P.K. Singh, Novel biopolymer gel electrolyte for dye-sensitized solar cell application, Carbohydr. Polym. 91(2) (2013) 682–685.

DOI: 10.1016/j.carbpol.2012.08.055

Google Scholar

[8] S. Jalilian and H. Yeganeh, Preparation and properties of biodegradable polyurethane networks from carbonated soybean oil. Polym. Bull. vol. 72, no. 6, (2015) 1379–1392.

DOI: 10.1007/s00289-015-1342-3

Google Scholar

[9] D. Wang, A critical review of cellulose-based nanomaterials for water purification in industrial processes, Cellulose 26 (2018) 687-701.

DOI: 10.1007/s10570-018-2143-2

Google Scholar

[10] S. Kushwaha, Cellulose: A review as natural, modified and activated carbon adsorbent, Bioresour. Technol. 216 (2016) 1066–1076.

Google Scholar

[11] C. Esposito Corcione, M.G. Manera, A. Maffezzoli, R. Rella, Synthesis and characterization of optically transparent epoxy matrix nanocomposites, Mater. Sci. Eng. C. 29(6) (2009) 1798–1802.

DOI: 10.1016/j.msec.2009.02.004

Google Scholar

[12] L.L. Yu, L.N. Jiang, S.Y. Wang, M.M. Sun, D.Q. Li, G.M. Du, Pectin gel microsphere as high adsorption rate material for methylene blue: Performance, equilibrium, kinetic, mechanism and regeneration studies, Int. J. Biol. Macromol. 112 (2018) 383-389.

DOI: 10.1016/j.ijbiomac.2018.01.193

Google Scholar

[13] Y. Wang, X. Jing, Effect of solution concentration on the UV-vis spectroscopy measured oxidation state of polyaniline base, Polym. Test. 24(2) (2005) 153–156.

DOI: 10.1016/j.polymertesting.2004.09.013

Google Scholar

[14] Y. Xiong, C. Wang, H. Wang, C. Jin, Q. Sun, X. Xu, Nano-cellulose hydrogel coated flexible titanate-bismuth oxide membrane for trinity synergistic treatment of super-intricate anion/cation/oily-water, Chem. Eng. J. 337 (2018) 143–151.

DOI: 10.1016/j.cej.2017.12.080

Google Scholar

[15] S. Yamasaki, W. Sakuma, H. Yasui, K. Daicho, T. Saito, S. Fujisawa, A. Isogai, K. Kanamori, Nanocellulose aerogels with high porosities and large specific surface areas, Front. Chem. 7 (2019) 1–8.

DOI: 10.3389/fchem.2019.00316

Google Scholar

[16] M. Beaumont, A. Kondor, S. Plappert, C. Mitterer, M. Opietnik, A. Potthast, T. Rosenau, Surface properties and porosity of highly porous, nanostructured cellulose II particles, Cellulose 24 (2016) 435-440.

DOI: 10.1007/s10570-016-1091-y

Google Scholar

[17] A. Sjöstedt, Preparation and characterization of nanoporous cellulose fibres and their use in new material concepts, KTH Royal Institute of Technology, Doctoral Thesis (2014).

Google Scholar

[18] L. Liu, F. Kong, In vitro investigation of the influence of nano-cellulose on starch and milk digestion and mineral adsorption, Int. J. Biol. Macromol. 137 (2019) 1278–1285.

DOI: 10.1016/j.ijbiomac.2019.06.194

Google Scholar

[19] S. Wong, S. Kasapis, Y. Mabelyn, Bacterial and plant cellulose modification using ultrasound irradiation, Carbohydr. Polym. 77(2) (2009) 280–287.

DOI: 10.1016/j.carbpol.2008.12.038

Google Scholar

[20] H. Bai, X. Wang, Y. Zhou, L. Zhang, Progress in Natural Science : Materials International Preparation and characterization of poly (vinylidene fluoride) composite membranes blended with nano-crystalline cellulose, Progress in Nature Science: Materials International 22(3) (2012) 250–257.

DOI: 10.1016/j.pnsc.2012.04.011

Google Scholar

[21] H. Abral, V. Lawrensius, D. Handayani, E. Sugiarti, Preparation of nano-sized particles from bacterial cellulose using ultrasonication and their characterization, Carbohydrate Polymers 191 (2018) 161–167.

DOI: 10.1016/j.carbpol.2018.03.026

Google Scholar

[22] C. Yu, Natural Textile Fibres: Vegetable Fibres, Text. Fash. Mater. Des. Technol. (2015) 29–56.

Google Scholar

[23] S. Kalidhasan, A.S. Krishnakumar, V. Rajesh, N. Rajesh, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy A preliminary spectroscopic investigation on the molecular interaction of metal – diphenylthiocarbazone complex with cellulose biopolymer and its application, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79(5) (2011) 1681–1687.

DOI: 10.1016/j.saa.2011.05.034

Google Scholar

[24] H.P.S. Abdul Khalil, C.K. Saurabh, A.S. Adnan, M.R. Nurul Fazita, M.I. Syakir, Y. Davoudpour, M. Rafatullah, C.K. Abdullah, M.K.M. Haafiz, R. Dungani, A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications, Carbohydr. Polym. 150 (2016) 216–226.

DOI: 10.1016/j.carbpol.2016.05.028

Google Scholar

[25] M. Fan, D. Dai, B. Huang, Fourier Transform Infrared Spectroscopy for Natural Fibres, Fourier Transform Material Analysis (2012) 45–68.

DOI: 10.5772/35482

Google Scholar