Hydrometallurgical Processing of Spent Carbon Lining to Extract Valuable Components for Cryolite Production

Article Preview

Abstract:

The technique of mathematical modeling using the Selector software package has been applied to study the leaching of fluorine from the carbon part of the aluminum electrolysis cell spent lining. Based on the model obtained, the effects of the solvent (caustic soda Na2Oку) concentration and the ratio of liquid and solid phases in the pulp on the fluorine extraction have been assessed. The research object was the lining samples by the RUSAL Krasnoyarsk JSC. A thermodynamic assessment of the spent carbon lining components behavior during the alkaline processing has been performed with the introduction of three solvent concentrations into the model: 12.5, 17.5, and 25.0 g/dm3. According to the model solutions, the maximum fluorine extraction (up to 90 %) is achieved when using a reagent with the Na2Oку concentrations of 12.5 and 17.5 g/dm3 and a liquid to solid ratio of 8.5÷10:1. Using the model, the phase composition of the cake and the forms, in which fluorine remains in the solid residue (cake), have been determined. Laboratory studies confirm the convergence of the simulation results with the experimental data: solutions have been obtained to crystallize out cryolite (with fluorine and silica content of 50–53 % wt. and 0.11÷0.53 % wt., respectively), which is in demand in the electrolysis of cryolite-alumina melts.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 316)

Pages:

667-672

Citation:

Online since:

April 2021

Export:

Price:

* - Corresponding Author

[1] F. Yan, M. Dupuis, J. Zhou, S. Ruan, In Depth Analysis of Energy-Saving and Current Efficiency Improvement of Aluminum Reduction Cells, Light Metals. (2013) 537-543.

DOI: 10.1002/9781118663189.ch91

Google Scholar

[2] V.V. Pingin, Ya.A. Tretyakov, E.Yu. Radionov, N.V. Nemchinova, Modernization prospects for the bus arrangement of electrolyzer S-8BM (S-8B) (С-8БМ (С-8Б)), Tsvetnye metally. 3 (2016) 35-41.

DOI: 10.17580/tsm.2016.03.06

Google Scholar

[3] A.M. Vinogradov, A.A. Pinaev, D.A. Vinogradov, A.V. Puzin, V.G. Shadrin, N.V. Zorko, V.V. Somov, Increasing hooding efficiency of Soderberg cells, Universities' Proceedings Non-Ferrous Metallurgy. 1 (2017) 19-30.

DOI: 10.17073/0021-3438-2017-1-19-30

Google Scholar

[4] V. Kovács, L. Kiss, Comparative Analysis of the Environmental Impacts of Aluminum Smelting Technologies, Light Metals. (2015) 529-534.

DOI: 10.1002/9781119093435.ch88

Google Scholar

[5] A.B. ElDeeb, V.N. Brichkin, R.V. Kurtenkov, I.S. Bormotov, Extraction of alumina from kaolin by a combination of pyro- and hydrometallurgical Processes. Applied Clay Science. 172 (2019) 146-154.

DOI: 10.1016/j.clay.2019.03.008

Google Scholar

[6] V.Yu. Bazhin, V.N. Brichkin, V.M. Sizyakov, M.V. Cherkasova, Pyrometallurgical treatment of a nepheline charge using additives of natural and technogenic origin. Metallurgist. 61 (2017), 147-154.

DOI: 10.1007/s11015-017-0468-y

Google Scholar

[7] H. Kvande, W. Haupin, Cell voltage in aluminium electrolysis: A practical approach, JOM. 52 (2000) 31-37.

DOI: 10.1007/s11837-000-0044-x

Google Scholar

[8] Information on https://digitalcommons.calpoly.edu/matesp/126.

Google Scholar

[9] J. Thonstad, P. Fellner, G.M. Haarberg, J. Híveš, H. Kvande and A. Sterten, Aluminium electrolysis: Fundamentals of the Hall-Héroult process, 3rd edition, Aluminium-Verlag, Düsseldorf, (2001).

Google Scholar

[10] B.P. Kulikov, S.P. Istomin, Aluminum production waste treatment, Кlassik LLC, Krasnoyarsk, (2004).

Google Scholar

[11] G. Holywell, R. Breault, An overview of useful methods to treat, recover, or recycle spent potlining, JOM. 65 (2013) 1441–1451.

DOI: 10.1007/s11837-013-0769-y

Google Scholar

[12] R.K. Patrin, V.Yu Bazhin, Spent linings from aluminum cells as a raw material for the metallurgical, chemical, and construction industries, Metallurgist. 58 (2014) 625-629.

DOI: 10.1007/s11015-014-9967-2

Google Scholar

[13] A.A. Petrovsky, N.V. Nemchinova, E.P. Rzhechitsky, Study of fluorine recovery from the spent lining refractory part of aluminum production electrolysers, Vestn. Irkutskogo Gos. Techn. Univ. 22 (2018) 151-162.

DOI: 10.21285/1814-3520-2018-8-151-162

Google Scholar

[14] E.Yu. Zenkin, A.A. Gavrilenko, N.V. Nemchinova, On RUSAL Bratsk JSC primary aluminum production waste recycling, Vestn. Irkutskogo Gos. Techn. Univ. 21 (2017) 123-132.

DOI: 10.21285/1814-3520-2017-3-123-132

Google Scholar

[15] Information on http://197.255.68.203/handle/123456789/8117.

Google Scholar

[16] N.V. Nemchinova, A.A. Tyutrin, A.E. Barauskas, Analysing the chemical composition of man-made materials resultant from the production of primary aluminium in order to find cost-effective recycling techniques. Tsvetnye Metally. (2019) 22–29.

DOI: 10.17580/tsm.2019.12.03

Google Scholar

[17] V.V. Somov, N.V. Nemchinova, N.A. Korepina, Analytical methods of researching the aluminium electrolysis cell fulfilled lining samples, J. Sib. Fed. Univ. Eng. technol. 10 (2017)607-620.

DOI: 10.17516/1999-494x-2017-10-5-607-620

Google Scholar

[18] A.N. Baranov, E.V. Timkina, A.A. Tyutrin, Research on leading fluorine from carbon-containing materials of aluminum production. Vestn. Irkutskogo Gos. Techn. Univ. 21 (2017)143-151.

DOI: 10.21285/1814-3520-2017-7-143-151

Google Scholar

[19] N.V. Nemchinova, A.A. Tyutrin, V.V. Somov, Determination of optimal fluorine leaching parameters from the coal part of the waste lining of dismantled electrolytic cells for aluminum production. Journal of Mining Institute. 239 (2019) 544-549.

DOI: 10.31897/pmi.2019.5.544

Google Scholar

[20] I.K. Karpov, K.V. Chudnenko, D.A. Kulik, Modeling chemical mass transfer in gheochemical processes: thermodynamic relations, conditions of equilibria, and numerical algorithms, Amer. J. Sci. 297 (1997) 767–806.

DOI: 10.2475/ajs.297.8.767

Google Scholar

[21] N.V. Nemchinova, S.S. Belsky, A.V. Aksyonov, A.A. Vasilyev, Using free energy minimization method for metallurgical process studies, Vestn. Irkutskogo Gos. Techn. Univ. 3 (2014) 151-158.

Google Scholar

[22] M.L. GrilloReno, F. MartinsTorres, R.J. Silva, J.J. Conceição SoaresSantos, M. de L. Noronha MottaMelo, Exergy analyses in cement production applying waste fuel and mineralizer, Energy Conversion and Management. 75 (2013) 98-104.

DOI: 10.1016/j.enconman.2013.05.043

Google Scholar