Physical and Structural Properties of Neodymium Doped Lithium Boro-Tellurite Glasses

Article Preview

Abstract:

Nd3+ doped lithium borotellurite glasses were successfully been prepared by conventional melt-quenching method with the chemical composition (70.0)B2O3-(5.0)TeO2-(25.0-x) Li2CO3-xNd2O3 (where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 2.0 mol%) by varying the Neodymium content. The physical properties such as density, molar volume and oxygen packing density were measured. The structural properties have been studied through X-ray diffraction (XRD) analysis and Fourier Transform Infrared (FTIR) spectroscopy. The XRD pattern has been used to confirm the amorphous nature of the glass samples. There are no sharp peaks were observed in XRD patterns of the glass samples which confirmed the amorphous nature of the glass. FTIR spectra were used to analyse the functional groups present in the glass samples. The FTIR spectra reveal the presence of B-O-B, B-O, BO3, BO4,Te-O and characteristic of the hydrogen bond in the prepared glass samples.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 290)

Pages:

53-59

Citation:

Online since:

April 2019

Export:

Price:

* - Corresponding Author

[1] Suthanthirakumar, P., Karthikeyan, P., Manimozhi, P. K., and Marimuthu, K. (2015). Structural and spectroscopic behavior of Er3+/Yb3+ co-doped boro-tellurite glasses. Journal of Non-Crystalline Solids, 410, 26-34.

DOI: 10.1016/j.jnoncrysol.2014.12.012

Google Scholar

[2] Jha, A. R. (2014). Rare earth materials: properties and applications. CRC Press.

Google Scholar

[3] Nurul Ain, A. M., Sahar, M. R., Sazali, E. S., Azman, K., and Norihan, Y. (2017). Study on Optical Absorption and Structural Bonding of Lithium Zinc Phosphate Glasses. In Solid State Phenomena, 268, 54-61.

DOI: 10.4028/www.scientific.net/ssp.268.54

Google Scholar

[4] Gedam, R. S., and Ramteke, D. D. (2012). Electrical and optical properties of lithium borate glasses doped with Nd2O3. Journal of rare Earths, 30(8), 785-789.

DOI: 10.1016/s1002-0721(12)60130-6

Google Scholar

[5] Azevedo, J., Coelho, J., Hungerford, G., and Hussain, N. S. (2010). Lasing transition (4F3/2→ 4I11/2) at 1.06 μm in neodymium oxide doped lithium boro tellurite glass. Physica B: Condensed Matter, 405(22), 4696-4701.

DOI: 10.1016/j.physb.2010.08.066

Google Scholar

[6] Babu, S. S., Rajeswari, R., Jang, K., Jin, C. E., Jang, K. H., Seo, H. J., and Jayasankar, C. K. (2010). Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinc tellurite glasses. Journal of Luminescence, 130(6), 1021-1025.

DOI: 10.1016/j.jlumin.2010.01.017

Google Scholar

[7] Kamitsos, E. I., and Chryssikos, G. D. (1991). Borate glass structure by Raman and infrared spectroscopies. Journal of molecular structure, 247, 1-16.

DOI: 10.1016/0022-2860(91)87058-p

Google Scholar

[8] Maheshvaran, K., Linganna, K., and Marimuthu, K. (2011). Composition dependent structural and optical properties of Sm3+ doped boro-tellurite glasses. Journal of Luminescence, 131(12), 2746-2753.

DOI: 10.1016/j.jlumin.2011.06.047

Google Scholar

[9] Pawar, P. P., Munishwar, S. R., Gautam, S., and Gedam, R. S. (2017). Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED. Journal of Luminescence, 183, 79-88.

DOI: 10.1016/j.jlumin.2016.11.027

Google Scholar

[10] Mhareb, M. H. A., Hashim, S., Ghoshal, S. K., Alajerami, Y. S. M., Saleh, M. A., Dawaud, R. S., and Azizan, S. A. B. (2014). Impact of Nd3+ ions on physical and optical properties of Lithium Magnesium Borate glass. Optical Materials, 37, 391-397.

DOI: 10.1016/j.optmat.2014.06.033

Google Scholar

[11] Gabr, M., Ali, K. A. A., and Mostafa, A. G. E. D. (2007). Infrared Analysis and Physical Properties Studies of B2O3.CaO.ZnO.TiO2 Glass System. Turkish Journal of physics, 31(1), 31-40.

Google Scholar

[12] Ratnakaram, Y. C., Babu, S., Bharat, L. K., and Nayak, C. (2016). Fluorescence characteristics of Nd3+ doped multicomponent fluoro-phosphate glasses for potential solid-state laser applications. Journal of Luminescence, 175, 57-66.

DOI: 10.1016/j.jlumin.2016.02.009

Google Scholar

[13] Barrow, N. (2006). Superstructural Units in Lithium Borate Glasses. Department of Physics, University of Warwick, Coventry, CV4 7AL.

Google Scholar

[14] El-Deen, L. S., Al Salhi, M. S., and Elkholy, M. M. (2008). IR and UV spectral studies for rare earths-doped tellurite glasses. Journal of Alloys and Compounds, 465(1-2), 333-339.

DOI: 10.1016/j.jallcom.2007.10.104

Google Scholar

[15] Pascuta, P., Pop, L., Rada, S., Bosca, M., and Culea, E. (2008). The local structure of bismuth borate glasses doped with europium ions evidenced by FT-IR spectroscopy. Journal of Materials Science: Materials in Electronics, 19(5), 424-428.

DOI: 10.1007/s10854-007-9359-5

Google Scholar

[16] Madhu, A., Eraiah, B., Manasa, P., and Basavapoornima, C. (2018). Er3+-ions doped lithium-bismuth-boro-phosphate glass for 1532 nm emission and efficient red emission up conversion for telecommunication and lasing applications. Journal of Non-Crystalline Solids, 495, 35-46.

DOI: 10.1016/j.jnoncrysol.2018.04.060

Google Scholar