Toxicity Evaluation of Graphene and Poly(Lactic-Acid) Using a Nematode Model

Article Preview

Abstract:

Graphene has gained tremendous attention due to its unlimited potential in various applications while poly(lactic acid) (PLA) is a biodegradable thermoplastic polyester produced from fermenting corn starch. The incorporation of graphene into PLA has been proven to exhibit excellent mechanical and thermal properties. However, there are not many reports on the potential toxic effect of these materials towards living organisms. In this study, we investigated the possible toxicity of graphene and PLA-graphene in a live animal model, the nematode Caenorhabdits elegans (C. elegans). Alive adult worms were exposed directly to graphene and PLA-graphene across a range of concentrations from 50 µg/mL to 1000 µg/mL. After certain hours of exposure, the pharyngeal pumping rate (indicative of the C. elegans feeding activity), reproductive rate and lifespan of the worms were determined and compared to the untreated worm population. At all concentrations tested, both graphene and PLA-graphene do not affect the feeding rate of the nematode. Additionally, there was no significant difference between the lifespan of worms exposed to graphene and PLA-graphene as compared to the untreated control population (p>0.05). We examined the effect of graphene on nematode’s ability to reproduce and no reduction in progenies was detected (p>0.05). Taken together, our findings suggest that graphene and PLA-graphene do not possess a negative effect on the feeding activity, reproduction and overall lifespan of the host, indicating that these materials are safe to living organism at concentration up to 1000 µg/mL.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 290)

Pages:

101-106

Citation:

Online since:

April 2019

Export:

Price:

* - Corresponding Author

[1] Y. Yang, A.M. Asiri, Z. Tang, D. Du, Y. Lin, Graphene based materials for biomedical applications, Mater. Today 16 (2013) 365-373.

DOI: 10.1016/j.mattod.2013.09.004

Google Scholar

[2] Q. Chen, J.D. Mangadlao, J. Wallat, A. De Leon, J.K. Pokorski, R.C. Advincula, 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties, ACS Appl. Mater. Interfaces 9 (2017) 4015-4023.

DOI: 10.1021/acsami.6b11793

Google Scholar

[3] D.D Shaye, I, Greenwald, OrthoList: a compendium of C. elegans genes with human orthologs, PLoS One 6 (2011) e20085.

DOI: 10.1371/journal.pone.0020085

Google Scholar

[4] J.N. Meyer, C.A. Lord, X.Y. Yang, E.A. Turner, A.R. Badireddy, S.M. Marinakos, A. Chilkoti, M.R. Wiesner, M. Auffan, Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans, Aquat. Toxicol. 100 (2010) 140-150.

DOI: 10.1016/j.aquatox.2010.07.016

Google Scholar

[5] X. Luo, S. Xu, Y. Yang, L. Li, S. Chen, A. Xu, L. Wu, Insights into the ecotoxicity of silver nanoparticles transferred from Escherichia coli to Caenorhabditis elegans, Sci. Rep. 6 (2016) 36465.

DOI: 10.1038/srep36465

Google Scholar

[6] S. Gupta, T. Kushwah, A. Vishwakarma, S. Yadav, Optimization of ZnO-NPs to investigate their safe application by assessing their effect on soil nematode Caenorhabditis elegans, Nanoscale Res. Lett. 10 (2015) 303.

DOI: 10.1186/s11671-015-1010-4

Google Scholar

[7] H. Wang, R.L. Wick, B. Xing, Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans, Environ. Pollut. 157 (2009) 1171-1177.

DOI: 10.1016/j.envpol.2008.11.004

Google Scholar

[8] L. Gonzalez-Moragas, A. Roig, A. Laromaine, C. elegans as a tool for in vivo nanoparticle assessment, Adv. Colloid Interface Sci. 219 (2015) 10-26.

DOI: 10.1016/j.cis.2015.02.001

Google Scholar

[9] M.J. Mashock, T. Zanon, A.D. Kappell, L.N. Petrella, E.C. Andersen, K.R. Hristova, Copper oxide nanoparticles impact several toxicological endpoints and cause neurodegeneration in Caenorhabditis elegans, PLoS One 11 (2016) e0167613.

DOI: 10.1371/journal.pone.0167613

Google Scholar

[10] J. Y. Roh, Y.K. Park, K. Park, J. Choi, Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility and survival as endpoints, Environ. Toxicol. Pharmacol. 29 (2010) 167-172.

DOI: 10.1016/j.etap.2009.12.003

Google Scholar

[11] K. Dharmalingam, B.K. Tan, M.Z. Mahmud, S.A.M. Sedek, M.I.A. Majid, M.K. Kuah, S.F. Sulaiman, K.L. Ooi, N.A.K. Khan, T.S.T. Muhammad, M.W. Tan, A.C. Shu-Chien, Swietenia macrophylla extract promotes the ability of Caenorhabditis elegans to survive Pseudomonas aeruginosa infection, J. Ethnopharmacol. 139 (2012) 657-663.

DOI: 10.1016/j.jep.2011.12.016

Google Scholar

[12] J. Keane, L. Avery, Mechanosensory inputs influence Caenorhabditis elegans pharyngeal activity via ivermectin sensitivity genes, Genetics 164 (2003) 153-162.

DOI: 10.1093/genetics/164.1.153

Google Scholar

[13] G.L. Sutphin, M. Kaeberlein, Measuring Caenorhabditis elegans life span on solid media, J. Vis. Exp. 27 (2009) e1152.

DOI: 10.3791/1152-v

Google Scholar

[14] N. Saul, K. Pietsch, R. Menzel, S.R. Sturzenbaum, C.E.W. Steinberg, Catechin induced longevity in C. elegans: from key regulator genes to disposable soma, Mech. Ageing Dev. 130 (2009) 477-486.

DOI: 10.1016/j.mad.2009.05.005

Google Scholar

[15] E. Zanni, G. De Bellis, M.P. Bracciale, A. Broggi, M.L. Santarelli, M.S. Sarto, C. Palleschi, D. Uccelletti, Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model, Nano Lett. 12 (2012) 2740 -2744.

DOI: 10.1021/nl204388p

Google Scholar

[16] Q. Wu, L. Yin, X. Li, M. Tang, T. Zhang, D. Wang, Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans, Nanoscale 5 (2013) 9934-9943.

DOI: 10.1039/c3nr02084c

Google Scholar

[17] Y. Zhang, S.F. Ali, E. Dervishi, Y. Xu, Z. Li, D. Casciano, A.S. Biris, Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derved PC12 cells, ACS Nano. 4 (2010) 3181-3186.

DOI: 10.1021/nn1007176

Google Scholar

[18] H. Chen, H. Li, D. Wang, Graphene oxide dysregulates neurologin/NGL-1-mediated molecular signaling in interneurons in Caenorhabditis elegans, Sci Rep. 7 (2017) 41655.

DOI: 10.1038/srep41655

Google Scholar