Core/Shell of p-CuxO/n-ZnO Nanowire Arrays for H2S Gas Sensor

Article Preview

Abstract:

The p-CuxO core/n-ZnO shell heterostructure nanowire (NW) arrays were fabricated by thermal decomposition. Based upon the core/shell nanowire-based all oxide p-n junctions. The samples were analyzed by XRD, SEM, EDS and TEM. X-ray diffraction (XRD) analysis showed that the p-CuxO core/n-ZnO shell NW consisted of phase of p-CuxO and wurtzite phase of n-ZnO. The morphology analysis showed average diameter and length of nanowires of ̴ 50 to 200 nm and ̴ 10 to 30 µm, respectively. The EDS spectrum confirmed the presence of required elements in the p-CuxO core /n-ZnO shell NWs. It was found that Zn, O and Cu are distributed over the wire areas according to a ratio of 1:2 by atomic% ratio of Cu:Zn to get good core/shell structure. The TEM characterizations showed that the n-ZnO shell nanoparticles were comprised of n-ZnO polycrystalline nanoparticles (NPs) on the surface of p-Cu2O core NWs. The H2S gas sensing properties of the p-CuxO/n-ZnO NWs were evaluated in air containing dilute H2S gas at sensing temperatures (T) of 350°C. The response of 20.6 for p-CuxO/n-ZnO NW sensor to H2S gas was enhanced compared to that of the n-ZnO NW. The enhanced response of p-CuxO/n-ZnO NW sensor is due to increasing surface area, the increased amount of chemisorbed oxygen species on NP surface and the increased conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 283)

Pages:

7-15

Citation:

Online since:

September 2018

Export:

Price:

* - Corresponding Author

[1] H. T. Wang, B. S. Kang, F. Ren, L. C.Tien, P. W. Sadik, D. P. Norton, S. J. Peartona, J. Lin, Hydrogen-selective sensing at room temperature with ZnO nanorods, Appl. Phys. Lett., 86 (2005) 243503−1−243503−3.

DOI: 10.1063/1.1949707

Google Scholar

[2] J. Huang, Q. Wan, Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures, Sensors, 9 (2009) 9903−9924.

DOI: 10.3390/s91209903

Google Scholar

[3] X. Y. Xue, Z. H. Chen, L. L. Xing, C. H. Ma, Y. J.Chen, T. H. Wang, Enhanced optical and sensing properties of one-step synthesized Pt−ZnO nanoflowers, J.Phys. Chem. C,114(2010) 18607−18611.

DOI: 10.1021/jp1070067

Google Scholar

[4] Q. Xiang, G. Meng, Y. Zhang, J. Xu, P. Xu, Q. Pan, W. Yu, Ag nanoparticle embedded ZnO nanorods synthesized via a photochemical method and its gas-sensing properties, Sens. Actuators B: Chem.,143(2010) 635−640.

DOI: 10.1016/j.snb.2009.10.007

Google Scholar

[5] S. J. Chang, T. J. Hsueh, I. C. Chen, B. R. Huang, Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles, Nanotechnology, 19 (2008) 175502−1−175502−5.

DOI: 10.1088/0957-4484/19/17/175502

Google Scholar

[6] C. Li, L. Li, Z. Du, H. Yu, Y. Xiang, Y. Li, Y. Cai, T. H. Wang, Rapid and ultrahigh ethanol sensing based on Au-coated ZnO nanorods, Nanotechnology, 19 (2008) 035501−1−035501−4.

DOI: 10.1088/0957-4484/19/03/035501

Google Scholar

[7] N. Yamazoe, G. Sakai, K. Shimanoe, Oxide Semiconductor Gas Sensor, Catal. Surv.Asia.,7 (2003) 63−75.

Google Scholar

[8] J. G. Bednorz, K. A. Z. Muller, Possible high Tc superconductivity in the barium-lanthanum-copper-oxygen system, Phys. B, 64 (1986) 189−193.

Google Scholar

[9] A. E. Rakhshani, Preparation, characteristics and photovoltaic properties of cuprous oxide-a review, Solid-State Electron, 29 (1986) 7−17.

DOI: 10.1016/0038-1101(86)90191-7

Google Scholar

[10] Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, V.B. C. Tan, J. T. L. Thong, C. H. Sow, Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films, Nanotechnology,16 (2005) 88−92.

DOI: 10.1088/0957-4484/16/1/018

Google Scholar

[11] L. Reijnen, B. Meester, A. Goossens, J. Schoonman, Atomic Layer Deposition of CuxS for Solar Energy Conversion, Chem.Vapor Depos., 9 (2003) 15−20.

DOI: 10.1002/cvde.200290001

Google Scholar

[12] P. Podhajecky,Z. Zabransky, P. Novak, Z. Dobiasova, R. Cerny, V. Valvoda, Relation between crystallographic microstructure and electrochemical properties of CuO for lithium cells, Electrochim. Acta, 35 (1990) 245−249.

DOI: 10.1016/0013-4686(90)85065-u

Google Scholar

[13] J. B. Reitz, E. I. Solomon, Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity, J. Am. Chem. Soc., 120 (1998) 11467−11478.

DOI: 10.1021/ja981579s

Google Scholar

[14] T. Ishihara, M. Higuchi, T. Takagi, M. Ito, H. Nishiguchi, Y. Takita, Preparation of CuO thin films on porous BaTiO3 by self-assembled multibilayer film formation and application as a CO2 sensor, J. Mater. Chem., 8 (1998) 2037−(2042).

DOI: 10.1039/a801595c

Google Scholar

[15] Q. Simon, D. Barreca, A. Gasparotto, C. Maccato, T. Montini, V. Gombac, P. Fornasiero, O. I. Lebedev, S. Turnere, G. V. Tendeloo, Vertically oriented CuO/ZnOnanorod arrays: from plasma-assisted synthesis to photocatalytic H2 production,J. Mater. Chem., 22 (2012).

DOI: 10.1039/c2jm31589k

Google Scholar

[16] Q. Simon, D. Barreca, A. Gasparotto, C. Maccato, E. Tondello, C. Sada, E.Comini, G. Sberveglieri, M. Banerjee, K. Xu, A. Devi, R. A. Fischer, CuO/ZnO Nanocomposite Gas Sensors Developed by a Plasma-Assisted Route, Chem. Phys. Chem., 13 (2012).

DOI: 10.1002/cphc.201101062

Google Scholar

[17] Y. S. Kim, S.-C. Ha, K. Kim, Room-Temperature Semiconductor Gas Sensor Based on Nonstoichiometry Tungsten Oxide Nanorod Film, Appl. Phys. Lett. 86 (2005) 213105.

DOI: 10.1063/1.1929872

Google Scholar

[18] H. Y. Yu, B. H. Kang, U. H. Pi, C. W. Park, S. Y. Choi, G. T. Kim, V2O5 Nanowire-Based Nanoelectronic Devices for Helium Detection,Appl. Phys. Lett. 86 (2005) 253102.

DOI: 10.1063/1.1954894

Google Scholar

[19] B. Bott, T. A. Jones, B. Mann, The Detection and Measurement of CO Using ZnO Single Crystals, Sens. Actuators B: Chem. 5 (1984) 65–73.

DOI: 10.1016/0250-6874(84)87007-9

Google Scholar

[20] D. Gruber, F. Kraus, J. Müller, A Novel Gas Sensor Design Based on CH4/H2/H2O Plasma Etched ZnO Thin Films,Sens. Actuators B: Chem. 92 (2003) 81–89.

DOI: 10.1016/s0925-4005(03)00013-3

Google Scholar

[21] F. Boccuzzi, A. Chiorino, G. Ghiotti, Guglielminotti, Infrared Study of H2 Sensing at 300 K Using M/ZnO Systems,Sens. Actuators B: Chem. 19 (1989) 119–124.

DOI: 10.1016/0250-6874(89)87064-7

Google Scholar

[22] F. Boccuzzi, E. Guglielminotti, A. Chiorino, IR Study of Gas-Sensing Materials: NO Interaction on ZnO and TiO2, Pure or Modified by Metals,Sens. Actuators B: Chem. 7 (1992) 645–650.

DOI: 10.1016/0925-4005(92)80379-c

Google Scholar

[23] N. Koshizaki, T. Oyama, Sensing Characteristics of ZnO-Based NOx Sensor, Sens. Actuators B: Chem. 66 (2000) 119–121.

DOI: 10.1016/s0925-4005(00)00323-3

Google Scholar

[24] M. Kudo, T. Kosaka, Y. Takahashi, H. Kokusen, N. Sotani, S. Hasegawa, Sensing Functions to NO and O2 of Nb2O5- or Ta2O5-Loaded TiO2 and ZnO, Sens. Actuators B: Chem. 69 (2000) 10–15.

DOI: 10.1016/s0925-4005(00)00335-x

Google Scholar

[25] R.-C. Chang, S.-Y. Chu, P.-W. Yeh, C.-S. Hong, P.-C. Kao, Y.-J. Huang, The Influence of Mg Doped ZnO Thin Films on the Properties of Love Wave Sensor, Sens. Actuators B: Chem. 132 (2008) 290–295.

DOI: 10.1016/j.snb.2008.01.038

Google Scholar

[26] T. Miyata, T. Hikosaka, T. Minami, High Sensitivity Chlorine Gas Sensors Using Multicomponent Transparent Conducting Oxide Thin Films, Sens. Actuators B: Chem. 69 (2000) 16–21.

DOI: 10.1016/s0925-4005(00)00301-4

Google Scholar

[27] F. Chaabouni, M. Abaab, B. Rezig, Metrological Characterization of ZnO Oxygen Sensor at Room Temperature, Sens. Actuators B: Chem. 100 (2004) 200–204.

DOI: 10.1016/j.snb.2003.12.059

Google Scholar

[28] H. Xu, X. Liu, D. Cui, M. Li, M. Jiang, A Novel Method for Improving the Performance of ZnO Gas Sensors,Sens. Actuators B: Chem. 114 (2006) 301–307.

DOI: 10.1016/j.snb.2005.05.020

Google Scholar

[29] J. K. Xu, Y. P. Chen, D. Y. Chen, J. N. Shen, Hydrothermal Synthesis and Gas Sensing Characters of ZnO Nanorods,Sens. Actuators B: Chem. 113 (2006) 526–531.

DOI: 10.1016/j.snb.2005.03.097

Google Scholar

[30] Z. Jing, J. Zhan, Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates, J. Adv. Mater. 20 (2008) 4547–4551.

DOI: 10.1002/adma.200800243

Google Scholar

[31] J. D. Choi, G. M. Choi, Electrical and CO Gas Sens- ing Properties of Layered ZnO-CuO Sensor, Sens. Actuators B: Chem. 69 (2000) 120–126.

DOI: 10.1016/s0925-4005(00)00519-0

Google Scholar

[32] Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications, J. Phys. Condens. Matter,16 (2004) R829–R858.

DOI: 10.1088/0953-8984/16/25/r01

Google Scholar

[33] X. Wang, C.J. Summers, Z.L. Wang, Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays, Nano Lett. 4(3) (2004) 423–426.

DOI: 10.1021/nl035102c

Google Scholar

[34] P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C.S. Lao, Z.L. Wang, Conversion of zinc oxide nanobelts into superlattice-structured nanohelices, Science 309 (2005) 1700–1704.

DOI: 10.1126/science.1116495

Google Scholar

[35] N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Acetylene sensor based on Pt/ZnO thick films as prepared by flame spray pyrolysis, Sens. Actuators B: Chem. 152 (2011) 155–161.

DOI: 10.1016/j.snb.2010.11.058

Google Scholar