Mechanochemical Processes in the System “Titanium - Heptane” during Ball Milling

Article Preview

Abstract:

The transformations of the solid and liquid phases at high energy planetary ball milling of heptane together with titanium powder were investigated. The sequence of structural heptane transformations using UV-and FT-IR spectroscopy was investigated. Phase constitutions of ball milled titanium powders were studied by X-ray diffraction. It is shown that mechanically induced destruction of heptane occurs by the mechanism of catalytic cracking. The main solid products of the mechanosynthesis were hexagonal (HCP) and cubic (FCC) titanium carbohydrides. Evolution of lattice parameters, crystallite sizes, and micro-stresses of the solid phases during ball milling as a function of the ball milling time have been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

532-536

Citation:

Online since:

May 2020

Export:

Price:

* - Corresponding Author

[1] M. Abdellahi, H. Bahmanpour, M. Bahmanpour, The best conditions for minimizing the synthesis time of nanocomposites during high energy ball milling: Modeling and optimizing, Ceram. Int. 40(2014) 9675-9695.

DOI: 10.1016/j.ceramint.2014.02.049

Google Scholar

[2] S. Kleiner, F. Betocco, F.A. Khalid, O. Beffort, Decomposition of process control agent during mechanical milling and its influence on displacement reactions in the Al-TiO2 systems, Mater. Chem. Phys. 89(2005) 662-663.

DOI: 10.1016/j.matchemphys.2004.09.014

Google Scholar

[3] E.P. Yelsykov, V.A. Barinov, L.V. Ovechkin, Synthesis of disordered Fe3C alloy by mechanical alloying of iron powder with liquid hydrocarbon (toluene), J. Mater. Sci. Lett. 11 (1992) 662-663.

DOI: 10.1007/bf00728898

Google Scholar

[4] A. Nouri, C. Wen, Surfactants in Mechanical Alloying/Milling: A Catch-22 Situation, Crit. Rev. Solid State Mater. Sci. 39(2014) 81–108.

DOI: 10.1080/10408436.2013.808985

Google Scholar

[5] S.F. Lomayeva, Structural and phase transformations, thermal stability, and magnetic and corrosive properties of nanocrystalline iron-based alloys obtained by mechanoactivation in organic media, Phys Met Metallogr. 104(2007) 388-407.

DOI: 10.1134/s0031918x07100092

Google Scholar

[6] L. Shaw, M. Zawrah, J. Villegas, H. Luo, D. Miracle, Effects of process-control agents on mechanical alloying of nanostructured aluminum alloys, Metall. Mater. Trans. A. 34-1(2003) 159-170.

DOI: 10.1007/s11661-003-0217-7

Google Scholar

[7] C.J. Rocha, R.M. Leal Neto, V.S. Goncalbes, L.L. Carvalho, F. Ambrozio Filho, An Investigation of the use of Stearic Acid as a Process Control Agent in High Energy Ball Milling of Nb-Al and Ni-Al Powder Mixtures, Mater. Sci. Forum. 416(2003) 144-149.

DOI: 10.4028/www.scientific.net/msf.416-418.144

Google Scholar

[8] S.J. Hales, P. Vasquez, Synthesis of Nano-crystalline gamma-TiAl materials, in: Gamma Titanium Aluminides, Y.-W. Kim, H. Clemens and A. H. Rosenberger (Eds.), TMS, Warrendale, PA, 2003, pp.305-310.

Google Scholar

[9] S. Kleiner, F. Bertocco1, F.A. Khalid, O. Beffort, Decomposition of process control agent during mechanical milling and its influence on displacement reactions in the Al–TiO2 system, Mater. Chem. Phys. 89(2005) 362–366.

DOI: 10.1016/j.matchemphys.2004.09.014

Google Scholar

[10] G.A. Bowmaker, Solvent-Assisted Mechanochemistry, Chem. Commun. 49(2013) 334−348.

DOI: 10.1039/c2cc35694e

Google Scholar

[11] S. Motozuka, M. Tagaya, M. Morinaga, T. Lkoma, T. Yoshioka, J. Tanaka, Methane adsorption and dissociation on mechanochemically activated iron-particle surfaces. Int. J. Powder Metall. 48(6) (2012) 21-29.

Google Scholar

[12] S. Alamohoda, S. Heshmati-Manesh, A. Ataie, A. Badiei, Role of process control agents on milling behavior of Al and TiO2 powder mixture to synthesize TiAl/Al2O3 nano composite, Int. J. Mod Phys: Conference Series. 5(2012) 638–645.

DOI: 10.1142/s2010194512002577

Google Scholar

[13] G.A. Dorofeev, V.I. Lad'yanov, A.N. Lubnin, V.V. Mukhgalin, O.M. Kanunnikova, S.S. Mikhailova, V.V. Aksenova, Mechanochemical interaction of titanium powder with organic liquids, Int. J. Hydrogen Energy. 32(2014) 9690-9699.

DOI: 10.1016/j.ijhydene.2014.04.101

Google Scholar

[14] A. Tonejc, C. Kosanovic, M. Stubicar, et al. Equivalence of ball milling and thermal treatment for phase transitions in the Al2O3 system, J. Alloys Compd. 204 (1994) L1-L3.

DOI: 10.1016/0925-8388(94)90055-8

Google Scholar

[15] A. Tonejc, A.M. Tonejc, D. Dužević, Estimation of peak temperature reached by particles trapped among colliding balls in the ball-milling process using excessive oxidation of antimony, Scripta Metall. Mater. 25(5) (1991) 1111-1113.

DOI: 10.1016/0956-716x(91)90511-x

Google Scholar

[16] E.V. Shelekhov, T.A. Sviridova, Simulation of the motion and heating of balls in a planetary ball mill. Effect of treatment modes on the products of mechanical activation of Ni and Nb powders. Materialovedenie, 10(1999) 13-22.

Google Scholar

[17] J. Eckert, L. Shultz, E. Hellstern, Glass-forming range in mechanically alloyed Ni-Zr and the influence of the milling intensity, J. Appl. Phys. 64(1988) 3224-3228.

DOI: 10.1063/1.341540

Google Scholar

[18] D.W. Mayo, F.A. Miller, R.W. Hannah, Course notes of the interpretation of infrared and Raman spectra, Willey, (2003).

Google Scholar

[19] K. Nakanishi, Infrared absorption spectroscopy, practical, Holden-Day, Nankodo, Tokyo, Japan, San Francisco, Calif., (1962).

DOI: 10.1126/science.140.3567.648

Google Scholar

[20] L.J. Bellamy, Advances in Infrared Group Frequencies, Methuen, London, England, (1968).

Google Scholar

[21] O.M. Kanunnikova, V.V. Aksenova, G.A. Dorofeev, Mechanochemical processes in the system titanium – toluene, during mechanical activation in a planetary ball mill, Mater. Sci. Forum 946(2019) 351-357.

DOI: 10.4028/www.scientific.net/msf.946.351

Google Scholar