Influence of Heat Treatment Parameters on the Functional Behavior and Corrosion Performance of a Shape Memory Wire Actuator

Article Preview

Abstract:

In the present study, the effect of heat treatment parameters on the functional response, corrosion behavior and microstructural evolution of NiTi shape memory alloys were investigated. Various heat treatment regimes were utilized to study the impact of temperature and duration on the actuation behavior of wire samples under bending. Results clarified that austenite transformation temperatures As and Af increased at higher treatment temperatures. Cyclic response in the range of 0 to 15 degrees indicated that the actuation force exhibits an inverse relation with the treatment temperature. Higher treatment durations below 500°C elevated both the hardness and the sustained load. Bending force levels above 1500gf were achieved after a 90 min treatment at 400°C, whereas that over 500°C brought about a noticeable drop in strength. Investigations on the corrosion behavior of NiTi alloy was utilized in the simulated body fluid revealing that the sample heat treated at 400°C for 90 min showed the highest corrosion resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-60

Citation:

Online since:

April 2020

Export:

Price:

* - Corresponding Author

[1] K. Otsuka and C.M. Wayman, Shape Memory Materials, Cambridge University Press, UK (1998), p.516.

Google Scholar

[2] K. Otsuka and X. Ren, Progress in Materials Science 50, (2005), p.511.

Google Scholar

[3] H. Matsumoto: J. Mater. Sci. Lett. 11, (1992), p.367.

Google Scholar

[4] A. Mehta, V. Imbeni and T.W. Duerig: J. Mat. Sci. Eng. A 378, (2004), p.130.

Google Scholar

[5] G.F. Andreasen and T.B. Hilleman: J. Am. Dent. Assoc. 82, 1373 (1971), p.1373.

Google Scholar

[6] Y. Haga and M. Esashi: IEEJ Trans. Sensors Micromachines 120, (2000), p.509.

Google Scholar

[7] D. Wever, J. Elstrodt, A. Veldhuizen and J. Horn: Eur. Spine J. 11, (2002), p.100.

Google Scholar

[8] L. Van Langenhove and C. Hertleer: Int. J. Cloth. Sci. Technol. 16, (2004), p.63.

Google Scholar

[9] D. J. Hartl and D. C. Lagoudas: J. Aerosp. Eng. 221, (2007), p.535.

Google Scholar

[10] Y. Liu, J. Van Humbeeck and L. Delaey: J. Alloys Compd. 247, (1997), p.115.

Google Scholar

[11] K. H. Eckelmeyer: Scr. Metall. 10, (1976), p.667.

Google Scholar

[12] T. U. Nishida and T. Honma: Scr. Metall. 18, (1984), p.1299.

Google Scholar

[13] W. B. Cross, A. H. Kariotis and F. J. Stimler: NASA CR-1433, 1 (1969).

Google Scholar

[14] X. Huang and Y. Liu: Scr. Mater. 45, (2001), p.153.

Google Scholar

[15] A. Nespoli, E. Villa, and F. Passaretti: Met. Mater. Int. 21, (2015), p.504.

Google Scholar

[16] S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka: J. Metall. Trans. A 17, (1986), p.115.

Google Scholar

[17] M. E. Mitwally and M. Farag: Mater. Sci. Eng. A. 519, (2009), p.155.

Google Scholar

[18] H. Sadiq, M.B. Wong, R. Al-Mahaidi and X.L. Zhao: Smart Mater. Struct. 19, (2010), p.1.

Google Scholar

[19] G. Tadayyon, S.M. Zebarjad, Y. Guo, M. Mazinani, S. Tofail and M.J. Biggs: Mater. Sci. Eng. A. 662, (2016), p.564.

Google Scholar

[20] C. Gyu-Bong, K. Yeon-Ho, H. Shin-Goo, Y. Cheol-Am and N. Tae-Hyun: Met. Mater. Int. 12, (2006), p.181.

Google Scholar

[21] S. H. Yoon and D. J. Yeo: Proc. SPIE-Int. Soc. Opt. Eng. 5648, (2004), p.208.

Google Scholar

[22] D. Vojtech, Int. Conf. on Metall. and Mat 1, (2010).

Google Scholar

[23] J. Zhang, M. Asai, W. Cai, R. Xiaobing and O. Kazuhiro: Mater. Trans. 40, (1999), p.1367.

Google Scholar

[24] M. Nishida, C.M. Wayman, and T. Honma: J. Metall. Trans. A 17, (1986), p.1505.

Google Scholar

[25] M. Nishida, C.M. Wayman, R. Kainuma, and T. Honma: J. Scripta Mater. 20, (1986), p.899.

Google Scholar

[26] M. Nishida, C.M. Wayman, and T. Honma: J. Metall. Trans. A 18, (1987), p.285.

Google Scholar

[27] T. Hara, T. Ohba, K. Otsuka, and M. Nishida: J. Mater. Trans. 38, (1997), p.277.

Google Scholar

[28] M. Chembath, J.N. Balaraju and M. Sujata: Surface and Coatings Tech. 302, (2016).

Google Scholar

[29] F. Mansfeld, in: Advances in corrosion science and technology, Springer (1976), p.163.

Google Scholar

[30] F. Zapoticla: M.Sc. Thesis, California Polytechnic State University, (2010), p.44.

Google Scholar

[31] K. Nurveren, A. Akdogan and W. M. Huang: J. Mater. Process. Technol. 196, (2008) p.129.

Google Scholar

[32] D. Vojtech, M. Voderova, J. Fojt, P. Novak, T. Kubasek: Appl. Surf. Sci. 257, (2010) p.1573.

Google Scholar

[33] A. Mahmud, Z. Wu, J. Zhang, Y. Liu, H. Yang: Intermetallics 103, (2018) p.52.

Google Scholar