The Effects of Split Valence Basis Sets on Muon Hyperfine Interaction in Guanine Nucleobase and Nucleotide Structures

Article Preview

Abstract:

The DFT cluster method was employed to investigate the electronic structures and muonium hyperfine interactions in guanine nucleobase and nucleotide using three different basis sets. The total energy and Fermi contact values were calculated for muon trapped at carbon '8'. The three basis sets, 6-31G, 6-311G and 6-311G(d,p), were used in tandem with the B3LYP functional. There are significant quantitative differences in the calculated total energy. 6-311G(d,p) produced the lowest total energy as compared to the other basis sets. The lowering of the total energy is due to the increase in the number of basis functions to describe the atomic orbitals, which is consistent with the postulate on basis set completeness. The 6-31G basis set produced the muon Fermi contact value that is the closest to the experimental value. The calculated Fermi contact values for the nucleobase and nucleotide are significantly lowered in going from the double-zeta to the triple-zeta basis set by 5% and 4% respectively. The lowering of the Fermi contact value can be attributed to the extension of the triple-zeta basis set in describing the valence atomic orbitals. The presence of the sugar phosphate group in the nucleotide instead of the methyl group tends to lower the Fermi contact value. Thus, the sugar phosphate group should be taken into consideration when designing a calculation model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

222-228

Citation:

Online since:

August 2019

Export:

Price:

* - Corresponding Author

[1] Pullman, B. and Pullman, A., Electron-donor and-acceptor properties of biologically important purines, pyrimidines, pteridines, flavins, and aromatic amino acids. Proceedings of the National Academy of Sciences, 44(12) (1958) 1197-1202.

DOI: 10.1073/pnas.44.12.1197

Google Scholar

[2] Chakraborty, T., Charge migration in DNA: perspectives from physics, chemistry, and biology, Heidelberg, New York, (2007).

Google Scholar

[3] Klotsa, D., R.A. Römer, and M.S. Turner, Electronic transport in DNA, Biophysical journal, 89(4) (2005) 2187-2198.

DOI: 10.1529/biophysj.105.064014

Google Scholar

[4] Cai, L., H. Tabata, and T. Kawai, Self-assembled DNA networks and their electrical conductivity, Applied Physics Letters, 77(19) (2000) 3105-3106.

DOI: 10.1063/1.1323546

Google Scholar

[5] Kaur, D.K., Bharadwaj, L.M., Kaur, I. and Singh, M.L., Tunneling effects in DNA bases adenine and guanine, International Journal of Computer Applications, 17(1) (2011).

DOI: 10.5120/2187-2766

Google Scholar

[6] Nagamine, K. and E. Torikai, Electron transfer in proteins and DNA probed by muon spin relaxation, Journal of Physics: Condensed Matter, 16(40) (2004) S4797.

DOI: 10.1088/0953-8984/16/40/020

Google Scholar

[7] Nagamine, K., Torikai, E., Shimomura, K., Ikedo, Y. and Schultz, J.S., Molecular radiation biological effect in wet protein and DNA observed in the measurements of labeled electron with muons, Physica B: Condensed Matter 404(5-7) (2009) 953-956.

DOI: 10.1016/j.physb.2008.11.237

Google Scholar

[8] Torikai, E., Nagamine, K., Pratt, F.L., Watanabe, I., Ikedo, Y., Urabe, H. and Grimm, H., Probing electron transfer in dna–new life science with muons, Hyperfine interactions 138(1-4) (2001) 509-513.

DOI: 10.1023/a:1020839031868

Google Scholar

[9] Torikai, E., Hori, H., Hirose, E. and Nagamine, K., Electron transfer in DNA probed by the muon labelling method: A new interpretation, Physica B: Condensed Matter, 374 (2006) 441-443.

DOI: 10.1016/j.physb.2005.11.127

Google Scholar

[10] Hubbard, P.L., Oganesyan, V.S., Sulaimanov, N., Butt, J.N. and Jayasooriya, U.A., Avoided level crossing muon spectroscopy of free radicals formed by muonium addition to the constituents of DNA, The Journal of Physical Chemistry A 108(42) (2004) 9302-9309.

DOI: 10.1021/jp0475335

Google Scholar

[11] Hubbard, P.L., Tani, A., Oganesyan, V.S., Butt, J.N., Cottrell, S.P. and Jayasooriya, U.A., Different responses to muon implantation in single-and double-stranded DNA, Physica B: Condensed Matter, 374 (2006) 437-440.

DOI: 10.1016/j.physb.2005.11.126

Google Scholar

[12] Mahato, D.N., Dubey, A., Pink, R.H., Scheicher, R.H., Badu, S.R., Nagamine, K., Torikai, E., Saha, H.P., Chow, L., Huang, M.B. and Das, T.P., Theoretical investigation of nuclear quadrupole interactions in DNA at first-principles level, in HFI/NQI 2007. (2008) 601-606.

DOI: 10.1007/978-3-540-85320-6_93

Google Scholar

[13] Oganesyan, V.S., Hubbard, P.L., Butt, J.N. and Jayasooriya, U.A., Laying the foundation for understanding muon implantation in DNA: ab initio DFT calculations of the nucleic acid base muonium adducts, Physica B: Condensed Matter, 326(1-4) (2003) 25-29.

DOI: 10.1016/s0921-4526(02)01569-7

Google Scholar

[14] Cammarere, D., Scheicher, R.H., Briere, T.M., Sahoo, N., Das, T.P., Pratt, F.L. and Nagamine, K., Theoretical study of trapping sites for muon in the heme group of cytochrome c and associated shifts in muon Spin Relaxation frequencies, Hyperfine interactions, 136(3-8) (2001) 759-762.

DOI: 10.1023/a:1020597932760

Google Scholar

[15] Scheicher, R.H., Das, T.P., Torikai, E., Pratt, F.L. and Nagamine, K., First-principles study of muonium in A-and B-form DNA, Physica B: Condensed Matter, 374 (2006) 448-450.

DOI: 10.1016/j.physb.2005.11.129

Google Scholar

[16] Scheicher, R.H., Torikai, E., Pratt, F.L., Nagamine, K. and Das, T.P., Comparative theoretical study of hyperfine interactions of muonium in A-and B-form DNA, in HFI/NQI 2004. (2005) 53-57.

DOI: 10.1007/3-540-30924-1_9

Google Scholar

[17] Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B.A. and Wang, J., PubChem substance and compound databases, Nucleic acids research, 44(D1) (2015) D1202-D1213.

DOI: 10.1093/nar/gkv951

Google Scholar

[18] Sinden, R.R., Pearson, C.E., Potaman, V.N. and Ussery, D.W., DNA: structure and function, in Advances in genome biology. (1998) 1-141.

DOI: 10.1016/s1067-5701(98)80019-3

Google Scholar

[19] Cammarere, D., Scheicher, R.H., Sahoo, N., Das, T.P. and Nagamine, K., First-principle determination of muon and muonium trapping sites in horse heart cytochrome c and investigation of magnetic hyperfine properties, Physica B: Condensed Matter, 289 (2000) 636-639.

DOI: 10.1016/s0921-4526(00)00299-4

Google Scholar

[20] Sulaiman, S.B., Sahoo, N., Srinivas, S., Hagelberg, F., Das, T.P., Torikai, E. and Nagamine, K., Theory of location and associated hyperfine properties of the positive muon in La2CuO4, Hyperfine Interactions, 84(1) (1994) 87-103.

DOI: 10.1007/bf02060647

Google Scholar

[21] Sulaiman, S.B., Sahoo, N., Das, T.P., Donzelli, O., Torikai, E. and Nagamine, K., Theory of copper hyperfine interactions in the La2CuO4 system, Physical Review B, 44(13) (1991) 7028.

Google Scholar

[22] Sulaiman, S.B., First Principles Investigation of Electronic Structures and Hyperfine Properties of Semiconductors and High Critical Transition Temperature Superconductors, (1992).

Google Scholar

[23] Zaharim, W.N., Sulaiman, S., Abu Bakar, S.N., Ismail, N.E., Rozak, H., and Watanabe, I., Density Functional Theory studies on guanine and cytosine, in ICMR 2018 - 7th International Conference on Multidisciplinary Research 2018, Scitepress: Medan, Indonesia. (to be published).

DOI: 10.5220/0008887000850091

Google Scholar

[24] Sulaiman, S., Ahmad, S.N.A., Mohamed-Ibrahim, M.I. and Watanabe, I., Electronic Structure of Muonated Me4P[Pd(dmit)2]2, in Materials Science Forum (2015).

DOI: 10.4028/www.scientific.net/msf.827.355

Google Scholar

[25] Izzati, T., S. Sulaiman, and Mohamed-Ibrahim, M.I., Density Functional Theory: Hybrid functional study of tetraphenyltin, Science International, 23(4) (2011).

Google Scholar

[26] Sahoo, N., Sulaiman, S.B., Mishra, K.C. and Das, T.P., Theory of structure and hyperfine properties of anomalous muonium in elemental semiconductors: Diamond, silicon, and germanium. Physical Review B, 39(18) (1989) 13389.

DOI: 10.1103/physrevb.39.13389

Google Scholar

[27] Rengifo, E. and G. Murillo, DFT-based investigation of the electronic structure of a double-stranded AC B-DNA dim, Revista de Ciencias, 16 (2012) 117-122.

DOI: 10.25100/rc.v16i0.507

Google Scholar

[28] Huzinaga, S., Basis sets for molecular calculations, Computer Physics Reports 2(6) (1985) 281-339.

DOI: 10.1016/0167-7977(85)90003-6

Google Scholar

[29] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H. and Li, X., Gaussian 16, revision A. 03. Gaussian Inc., Wallingford CT, (2016).

Google Scholar

[30] Coulson, C., Valence Angles in Group II Dihalide Molecules, Israel Journal of Chemistry, 11(5) (1973) 683-690.

DOI: 10.1002/ijch.197300065

Google Scholar