Synthesis of Precipitate Calcium Carbonate with Variation Morphology from Limestone by Using Solution Mixing Method

Article Preview

Abstract:

Abstract. In this study, the CaCO3 powder has been successfully synthesized by mixing CaCl2 from natural limestone and Na2CO3 in the same molar ratio. The mixing process of solutions was carried out by employing the molar contents of 0.125, 0.25, 0.375 and 0.5M at varying temperatures of 30, 40, 60 and 80ᴼC. The produced CaCO3 microparticles were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The highest content of aragonite phase with morphology rod-like of the samples is around 29 wt%, resulting from the process using solution of 0.125 M at 80 ᴼC. While at 30 ᴼC and 40 ᴼC produced 100 wt% calcite phase.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

200-203

Citation:

Online since:

August 2019

Export:

Price:

* - Corresponding Author

[1] Y.S. Han, G. Hadiko, M. Fuji, M. Takahashi, Factors Affecting the Phase and Morphology of CaCO3 Prepared by a Bubbling Method, J. Euro. Ceram. Soc. 26 (2006) 843-847.

DOI: 10.1016/j.jeurceramsoc.2005.07.050

Google Scholar

[2] G. Li, Z. Li, H. Ma, Synthesis of aragonite by carbonization from dolomite without any additives, Int. J. Mine Process. 123 (2013) 25-31.

DOI: 10.1016/j.minpro.2013.03.006

Google Scholar

[3] Z. Hu, M. Shao, Q. Cai, S. Ding, C. Zhong, W. Xa, Y. Deng, Synthesis of needle-like aragonite from limestone in the presence of magnesium chloride, J. Mat. Process. Tech. 209 (2009) 1607-1611.

DOI: 10.1016/j.jmatprotec.2008.04.008

Google Scholar

[4] Z, Arifin, S. Pratapa, Triwikantoro, Darminto, Precipitated CaCO3 with Unique Crystalline Morphology Prepared from Limestone, Trans. Ind. Ceram. So. 74 (2015) 1-6.

DOI: 10.1080/0371750x.2015.1084892

Google Scholar

[5] W. H, Q. Shen, Y. Zhao, Y. Zhou, D. Wang, D. Xu, Effect of anionic surfactant–polymer complexes on the crystallization of calcium carbonate , J. Cryst. Growth. 264 (2004) 424-429.

DOI: 10.1016/j.jcrysgro.2004.01.001

Google Scholar

[6] J. Yu, J.C. Yu, L. Zhang, X. Wanga, L. Wu, Facile fabrication and characterization of hierarchically porous calcium carbonate microspheres, J. Chem. Commun. 24 (2004) 14-19.

DOI: 10.1039/b406839d

Google Scholar

[7] S.H. Yu, H. Cölfen, A.W. Xu, W. Dong, Complex Spherical BaCO3 Superstructures Self-Assembled by a Facile Mineralization Process under Control of Simple Polyelectrolytes, Cryst. Growth. Design. 4 (2004) 33-37.

DOI: 10.1021/cg0340906

Google Scholar

[8] S.B. Jeong, Y.C. Yang, Y.B. Chae, B.G Kim, Characteristics of the Treated Ground Calcium Carbonate Powder with Stearic Acid Using the Dry Process Coating System, J. Mat. Trans. 50 (2009) 409-414.

DOI: 10.2320/matertrans.mrp2008351

Google Scholar

[9] C. Wang, C. He, Z. Tong, X. Liu, B. Ren, F. Zeng, Combination of adsorption by porous CaCO3 microparticles, Int. J. of Pharmace. 308 (2010) 160-167.

Google Scholar

[10] C. Peng, Q. Zhao, C. Gao, Sustained delivery of doxorubicin by porous CaCO3 and chitosan/alginate, Coll. Surf. Physicochem. 353 (2010) 132-139.

DOI: 10.1016/j.colsurfa.2009.11.004

Google Scholar

[11] G.S. Kumar, E.K. Girija, Thamizhavel, Y. Yokogawa, S.N. Kalkura, Synthesis and characterization of bioactive hydroxyapatite–calcite nanocomposite for biomedical applications. J. Coll and Interf Science. 349 (2008) 56–62.

DOI: 10.1016/j.jcis.2010.05.038

Google Scholar

[12] H. Ghamgui, N. Miled, Karra-chaˆabouni, Gargouri, Y. "Immobilization studies and iochemical properties of free and immobilized Rhizopus oryzae lipase onto CaCO3, J. Gargouri Biochem. Eng. 37 (2007) 34-41.

DOI: 10.1016/j.bej.2007.03.006

Google Scholar

[13] Montes, Hernandez, F. Renard, N. Geoffro, Charlet, Pironon, Calcite precipitation from CO2–H2O–Ca(OH)2 slurry under high pressure of CO2 , J. Cryst. Growth. 308 (2007) 228-236.

DOI: 10.1016/j.jcrysgro.2007.08.005

Google Scholar