Cascade Collision near the Grain Boundary of Fe-Cr Alloy by MD Simulation

Article Preview

Abstract:

Using molecular dynamics method to study the cascade collision for the case of PKA(Primary Knock-on Atom) atoms at different distance from the grain boundary(GB) of iron chromium alloy. It is found that the PKA atoms at the GB will produce a large size cluster (size from 11 to 409 ) consisting of interstitial and vacancies, and many small clusters (number from 5 to 50). The size and number of the cluster depend heavily on PKA energy, while depend weakly on temperature. The PKA atom at distance of 1nm from the GB, sometimes produces large size defect clusters both inside and outside the GB region. When the PKA atom is at 1nm, 2nm and even 3nm, 4nm from the GB, the GB will effectively absorb the interstitial atoms. It is found that the atomic ratio of Cr-interstitial to total interstitial produced at the GB region is much less than one at outside of GB region.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

642-649

Citation:

Online since:

February 2018

Export:

Price:

* - Corresponding Author

[1] Structural Materials for Generation IV Nuclear Reactors[M]. Woodhead Publishing, (2016).

Google Scholar

[2] Jayakumar T, Mathew M D, Laha K, et al. Materials development for fast reactor applications[J]. Nuclear Engineering and Design, 265 (2013) 1175-1180.

DOI: 10.1016/j.nucengdes.2013.05.001

Google Scholar

[3] Murty K L, Charit I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities[J]. Journal of Nuclear Materials, 383(1) (2008) 189-195.

DOI: 10.1016/j.jnucmat.2008.08.044

Google Scholar

[4] Yvon P, Carré F. Structural materials challenges for advanced reactor systems[J]. Journal of Nuclear Materials, 385(2) (2009) 217-222.

DOI: 10.1016/j.jnucmat.2008.11.026

Google Scholar

[5] Terentyev D A, Malerba L, Chakarova R, et al. Displacement cascades in Fe–Cr: A molecular dynamics study[J]. Journal of nuclear materials, 349(1) (2006) 119-132.

DOI: 10.1016/j.jnucmat.2005.10.013

Google Scholar

[6] Terentyev D A, Malerba L, Chakarova R, et al. Displacement cascades in Fe–Cr: A molecular dynamics study[J]. Journal of nuclear materials, 349(1) (2006) 119-132.

DOI: 10.1016/j.jnucmat.2005.10.013

Google Scholar

[7] Malerba L, Terentyev D, Olsson P, et al. Molecular dynamics simulation of displacement cascades in Fe–Cr alloys[J]. Journal of Nuclear Materials, 329 (2004) 1156-1160.

DOI: 10.1016/j.jnucmat.2004.04.270

Google Scholar

[8] Matijasevic M, Almazouzi A. Effect of Cr on the mechanical properties and microstructure of Fe–Cr model alloys after n-irradiation[J]. Journal of Nuclear Materials, 377(1) (2008) 147-154.

DOI: 10.1016/j.jnucmat.2008.02.061

Google Scholar

[9] Matijasevic M, Almazouzi A. Effect of Cr on the mechanical properties and microstructure of Fe–Cr model alloys after n-irradiation[J]. Journal of Nuclear Materials, 377(1) (2008)147-154.

DOI: 10.1016/j.jnucmat.2008.02.061

Google Scholar

[10] Gelles D S. Void swelling in binary FeCr alloys at 200 dpa[J]. Journal of nuclear materials, 225 (1995) 163-174.

DOI: 10.1016/0022-3115(95)00053-4

Google Scholar

[11] Zhang C G, Zhou W H, Li Y G, et al. Primary radiation damage near grain boundary in bcc tungsten by molecular dynamics simulations[J]. Journal of Nuclear Materials, 458 (2015) 138-145.

DOI: 10.1016/j.jnucmat.2014.11.135

Google Scholar

[12] Shim J H, Lee H J, Wirth B D. Molecular dynamics simulation of primary irradiation defect formation in Fe–10% Cr alloy[J]. Journal of nuclear materials, 351(1) (2006) 56-64.

DOI: 10.1016/j.jnucmat.2006.02.021

Google Scholar

[13] Bai X M, Voter A F, Hoagland R G, et al. Efficient annealing of radiation damage near grain boundaries via interstitial emission[J]. Science, 327(5973) (2010) 1631-1634.

DOI: 10.1126/science.1183723

Google Scholar

[14] Chimi Y, Iwase A, Ishikawa N, et al. Accumulation and recovery of defects in ion-irradiated nanocrystalline gold[J]. Journal of Nuclear Materials, 297(3) (2001) 355-357.

DOI: 10.1016/s0022-3115(01)00629-8

Google Scholar

[15] Nita N, Schaeublin R, Victoria M. Impact of irradiation on the microstructure of nanocrystalline materials[J]. Journal of Nuclear Materials, 329 (2004) 953-957.

DOI: 10.1016/j.jnucmat.2004.04.058

Google Scholar

[16] Samaras M, Derlet P M, Van Swygenhoven H, et al. Computer simulation of displacement cascades in nanocrystalline Ni[J]. Physical review letters, 88(12) (2002) 125505.

DOI: 10.1103/physrevlett.88.125505

Google Scholar

[17] Plimpton S, Crozier P, Thompson A. LAMMPS-large-scale atomic/molecular massively parallel simulator[J]. Sandia National Laboratories, (2007) 18.

Google Scholar

[18] Stukowski A, Sadigh B, Erhart P, et al. Efficient implementation of the concentration-dependent embedded atom method for molecular-dynamics and Monte-Carlo simulations[J]. Modelling and Simulation in Materials Science and Engineering, 17(7) (2009).

DOI: 10.1088/0965-0393/17/7/075005

Google Scholar

[19] Phythian W J, Stoller R E, Foreman A J E, et al. A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution[J]. Journal of nuclear materials, 223(3) (1995) 245-261.

DOI: 10.1016/0022-3115(95)00022-4

Google Scholar

[20] Yang L, Zu X T, Xiao H Y, et al. Defect production and formation of helium–vacancy clusters due to cascades in α-iron[J]. Physica B: Condensed Matter, 391(1) (2007) 179-185.

DOI: 10.1016/j.physb.2006.09.017

Google Scholar