Tensile Properties of Carbon Nanoring Linked Graphene Sheets: A Molecular Dynamics Investigation

Article Preview

Abstract:

The effects of CNR diameter and CNR number on tensile properties of the CNR-graphene hybrid structure (CGHS) were studied by molecular dynamics simulation in this paper. Results show that interactions between adjacent graphene sheets are significantly strengthened by the cross-linked CNRs. For CGHSs, the maximum strength is ~64.0 GPa and the maximum Young’s modulus strength is ~763 GPa. When the diameter of CNRs is large or the CNR linkers are dense, the tensile strength of CGHSs reached the maximum and the fracture mechanism of CGHSs changed from CNR-graphene junction fracture to graphene sheet fracture. Present work should serve as guide to experiments concerning physical properties of this novel material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

607-613

Citation:

Online since:

February 2018

Export:

Price:

* - Corresponding Author

[1] J. Niu, M. Li, Z. Xi, Growth mechanisms and mechanical properties of 3D carbon nanotube–graphene junctions: molecular dynamic simulations, RSC Adv. 4 (2014) 33848-33854.

DOI: 10.1039/c4ra04008b

Google Scholar

[2] J. Niu, M. Li, W. Choi, L. D. c, Z. Xia, Growth of junctions in 3D carbon nanotube-graphene nanostructures: A quantum mechanical molecular dynamic study, Carbon. 67 (2014) 627-634.

DOI: 10.1016/j.carbon.2013.10.036

Google Scholar

[3] F. Du, D. Yu, L. Dai, S. Gangul, V. Varshne, A. K. Roy, Chem. Mater. 23 (2011) 4810-4816.

Google Scholar

[4] Q. Zheng, Z. Li, J. Yang, J. -K. Kim, Graphene oxide-based transparent conductive films, Prog. Mater Sci. 64 (2014) 200-247.

Google Scholar

[5] G. K. Dimitrakakis, E. Tylianakis, G. E. Froudakis, Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage, Nano Lett. 8 (2008) 3166-3170.

DOI: 10.1021/nl801417w

Google Scholar

[6] P. W. Radoslaw, A. P. Terzyk, Pillared graphene as a gas separation membrane, Phys. Chem. Chem. Phys. 13 (2011) 17027-17029.

DOI: 10.1039/c1cp21590f

Google Scholar

[7] E. Kayahara, V. K. Patel, S. Yamago, Synthesis and Characterization of [5]Cycloparaphenylene, J. Am. Chem. Soc. 136 (2014) 2284-2287.

DOI: 10.1021/ja413214q

Google Scholar

[8] H. Omachi, T. Nakayama, E. Takahashi, Y. Segawa, K. Itami, Initiation of carbon nanotube growth by well-defined carbon nanorings, Nat. Chem. 5 (2013) 572-576.

DOI: 10.1038/nchem.1655

Google Scholar

[9] J. Zhang, G. Shi, C. Jiang, S. Ju, D. Jiang, 3D Bridged Carbon Nanoring/Graphene Hybrid Paper as a High-Performance Lateral Heat Spreader, Small. 46 (2015) 6197-6204.

DOI: 10.1002/smll.201501878

Google Scholar

[10] H. Eslami, M. Behrouz, Molecular dynamics simulation of a polyamide-66/carbon nanotube nanocomposite, J. Phys. Chem. C 118 (2014) 9841-9851.

DOI: 10.1021/jp501672t

Google Scholar

[11] G. Penazzi, J. Carlsson, C. Diedrich, G. Olf, A. Pecchia, T. Frauenheim, Atomistic modeling of charge transport across a carbon nanotube-polyethylene junction, J. Phys. Chem. C 117 (2013) 8020-8027.

DOI: 10.1021/jp312381k

Google Scholar

[12] L. He, S. Guo, J. Lei, Z. Sha, Z. Liu, The effect of Stone-Thrower-Wales defects on mechanical properties of graphene sheets - A molecular dynamics study, Carbon. 75 (2014) 124-132.

DOI: 10.1016/j.carbon.2014.03.044

Google Scholar

[13] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1-19.

Google Scholar

[14] S. J. Stuart, A. B. Tutein, J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (2000) 6472-6486.

DOI: 10.1063/1.481208

Google Scholar

[15] Y. Y. Zhang, C. M. Wang, Y. Cheng, Y. Xiang, Carbon. 49 (2011) 4511-4517.

Google Scholar

[16] M. Chen, S. Quek, Z. Sha, C. Chiu, Q. Pei, Y. Zhang, Carbon. 85 (2015) 135-146.

Google Scholar

[17] C. W. Pao, T. H. Liu, C. C. Chang, D. J. Srolovitz, Graphene defect polarity dynamics, Carbon. 50 (2012) 2870-2876.

DOI: 10.1016/j.carbon.2012.02.055

Google Scholar

[18] H. Qin, Y. Sun, J. Z. Liu, Y. Liu, Mechanical properties of wrinkled graphene generated by topological defects, Carbon. 108 (2016) 204-214.

DOI: 10.1016/j.carbon.2016.07.014

Google Scholar

[19] Y Zheng, N Wei, Z Fan, L Xu, Z Huang, Mechanical properties of grafold: a demonstration of strengthened graphene, Nanotechnology. 22 (2011) 405701-405709.

DOI: 10.1088/0957-4484/22/40/405701

Google Scholar

[20] L. F. C. Pereira, B. Mortazavi, M. Makaremi, T. Rabczuk, Anisotropic thermal conductivity and mechanical properties of phagraphene: a molecular dynamics study, RSC Adv. 6 (2016) 57773-57779.

DOI: 10.1039/c6ra05082d

Google Scholar

[21] Q. X. Pei, Y. W. Zhang, V. B. Shenoy, A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene, Carbon. 48 (2010) 898-904.

DOI: 10.1016/j.carbon.2009.11.014

Google Scholar

[22] F. Liu, P. Ming, J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B: Condens. Matter Mater. Phys. 76 (2007) 0641201-0641207.

DOI: 10.1103/physrevb.76.064120

Google Scholar

[23] C. Lee, X. Wei, J. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science. 321 (2008) 385-388.

DOI: 10.1126/science.1157996

Google Scholar