The Precipitation Behavior of γ′ Phase in Single Crystal Ni-Based DD6 Superalloy for Turbine Blade

Article Preview

Abstract:

The precipitation behavior of γ′ precipitates in typical section dimensions of DD6 single crystal superalloy turbine blade was investigated experimentally during directional solidification process. The phase transformation temperatures in the single crystal Ni-based DD6 superalloy from DSC analysis and JmatPro simulation were basically in consistent with the isothermal solidification experiments. The solidification route of DD6 single crystal superalloy could be described as follows: L1 → γ + L2; L2 → (γ + γ′)eutectic + MC; γ → γ′/γ. With increasing continuous cooling rates, the primary γ′ precipitates tended to be refined, and the size distributions of the primary γ′ precipitates at every temperature measuring position followed the normal distribution. In comparison to the interdendritic regions, nearly a 60% reduction in the average sizes of the primary γ′ precipitates was measured in the dendritic core regions. The result of the primary γ′ size difference was strongly affected by the multi-component segregations between the interdendritic and dendritic regions, where the γ′ forming elements of Al and Ta segregated towards the interdendritic regions. Furthermore, the secondary γ′ precipitation was found to occur within a relatively wide corridor of γ matrix for low cooling rates (12.6, 23.3 and 29.7 °C/min) during the directional solidification process. The occurrence of the secondary γ′ precipitation resulted from the complex interaction of multiple thermodynamic and kinetic factors in the γ′ nucleation and the diffusion rate of γ′ forming elements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

534-544

Citation:

Online since:

June 2017

Export:

Price:

* - Corresponding Author

[1] J.R. Li, Z.G. Zhong, D.Z. Tang, S.Z. Liu, P. Wei, P.Y. Wei, Z.T. Wu, D. Huang, M. Han, in: T.M. Pollock et al. (Eds. ), Superalloys 2000, TMS, Warrendale (PA), 2000, p.777–783.

Google Scholar

[2] Z. Zhu, H. Basoalto, N. Warnken, R.C. Reed, Acta Mater. 60 (2012) 4888–4900.

Google Scholar

[3] A. Ma, D. Dye, R.C. Reed, Acta Mater. 56 (2008) 1657–1670.

Google Scholar

[4] Takao Murakumo, Toshiharu Kobayashi, Yutaka Koizumi, Hiroshi Harada, Acta Mater. 52 (2004) 3737–3744.

Google Scholar

[5] R. Gilles, D. Mukherji, H. Eckerlebe, L. Karge, P. Staron, P. Strunz, Th. Lippmann, J. Alloys Comp. 612 (2014) 90–97.

DOI: 10.1016/j.jallcom.2014.05.154

Google Scholar

[6] X.P. Tan, D. Mangelinck, C. Perrin-Pellegrino, L. Rougier, Ch. -A. Gandin, A. Jacot, D. Ponsen, V. Jaquet, J. Alloys Comp. 611 (2014) 389–394.

DOI: 10.1016/j.jallcom.2014.05.132

Google Scholar

[7] Koji Kakehi, Mater. Sci. Eng. A 278 (2000) 135–141.

Google Scholar

[8] T. Grosdidier, A. Hazotte, A. Simon, Mater. Sci. Eng. A 256 (1998) 183–196.

Google Scholar

[9] R. Radis, M. Schaffer, M. Albu, G. Kothleitner, P. Pölt, E. Kozeschnik, Acta Mater. 57 (2009) 5739–5747.

DOI: 10.1016/j.actamat.2009.08.002

Google Scholar

[10] S.S. Babu, M.K. Miller, J.M. Vitek, S.A. David, Acta Mater. 49 (2001) 4149–4160.

Google Scholar

[11] A.R.P. Singh, S. Nag, S. Chattopadhyay, Y. Ren, J. Tiley, G.B. Viswanathan, H.L. Fraser, R. Banerjee, Acta Mater. 61 (2013) 280–293.

DOI: 10.1016/j.actamat.2012.09.058

Google Scholar

[12] A.R.P. Singh, S. Nag, J.Y. Hwang, G.B. Viswanathan, J. Tiley, R. Srinivasan, H.L. Fraser, R. Banerjee, Mater. Charact. 62 (2011) 878–886.

DOI: 10.1016/j.matchar.2011.06.002

Google Scholar

[13] P.M. Sarosi, B. Wang, J.P. Simmons, Y. Wang, M.J. Mills, Scripta Mater. 57 (2007) 767–770.

Google Scholar

[14] J.R. Li, J.Q. Zhao, S.Z. Liu, M. Han, in: R.C. Reed et al. (Eds. ), Superalloys 2008, TMS, Warrendale (PA), 2008, p.443–451.

Google Scholar

[15] Y.W. Fan, Q. Wang, S.E. Hou, Special Casting & Nonferrous Alloys 30 (2010) 1148–1149. [in Chinese].

Google Scholar

[16] F. Wang, D.X. Ma, J. Zhang, L. Liu, S. Bogner, A. Bührig-Polaczek, J. Alloys Comp. 616 (2014) 102–109.

Google Scholar

[17] G. Liu, L. Liu, C. Ai, B.M. Ge, J. Zhang, H.Z. Fu, J. Alloys Comp. 509 (2011) 5866–5872.

Google Scholar

[18] K.Y. Cheng, C.Y. Jo, D.H. Kim, T. Jin, Z.Q. Hu, Mater. Charact. 60 (2009) 210–218.

Google Scholar

[19] R.M. Kearsey, J.C. Beddoes, P. Jones, P. Au, Intermetallics. 12 (2004) 903–910.

Google Scholar

[20] D. Ma and U. Grafe, Mater. Sci. Eng. A 270 (1999) 339–342.

Google Scholar

[21] M.S.A. Karunaratne, D.C. Cox, P. Carter, R.C. Reed, in: T.M. Pollock et al. (Eds. ), Superalloys 2000, TMS, Warrendale (PA), 2000, p.263–272.

Google Scholar

[22] F. Liu, G.C. Yang, Int. Mater. Rev. 51 (2006) 145–170.

Google Scholar

[23] A.V. Shulga, J. Alloys Comp. 436 (2007) 155–160.

Google Scholar

[24] X.F. Ding, T. Mi, F. Xue, H.J. Zhou, M.L. Wang, J. Alloys Comp. 599 (2014) 159–163.

Google Scholar

[25] X. Zhao, L. Liu, Z. Yu, W. Zhang, J. Zhang, H. Fu, J. Mater. Sci. 45(2010) 6101–6107.

Google Scholar

[26] F. Wang, D.X. Ma, J. Zhang, A. Bührig-Polaczek, J. Alloys Comp. 620 (2015) 24–30.

Google Scholar

[27] J.Y. Hwang, S. Nag, A.R.P. Singh, R. Srinivasan, J. Tiley, G.B. Viswanathan, H.L. Fraser, R. Banerjee, Metall. Mater. Trans. A 40 (2009) 3059–3068.

DOI: 10.1007/s11661-009-0075-z

Google Scholar