Development of High-Performing Extruded Magnesium Alloy

Article Preview

Abstract:

To develop high-performing extruded magnesium alloys, we had investigated the effect of zinc into Mg-5Gd-2Y-xZn-0.7Ca (x = 1, 2, 3, and 4) alloys. With increasing of zinc content up to 3 wt.%, the volume fraction of LPSO phases and strength increased, while the volume fraction of LPSO and strength rapidly decreased when zinc content was 4 wt.% in Mg-5Gd-2Y-xZn-0.7Ca alloys. Ignition temperature and corrosion rate were directly proportional to the increase of zinc content in this study. The optimum zinc content was 2 wt.% in Mg-5Gd-2Y-xZn-0.7Ca alloys and VWZO52207 alloy exhibited high strengths (TYS: 407 MPa and UTS: 424 MPa), adequate elongation (6.9 %), and high ignition temperature (934 oC).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2495-2500

Citation:

Online since:

November 2016

Export:

Price:

* - Corresponding Author

[1] H. Watarai, Trend of research and development for magnesium alloys, Quarterly Review (NISTEP) 18 (2006) 84-97.

Google Scholar

[2] Avedesian, H. Baker, eds., Magnesium and Magnesium Alloys, ASM International, Metals Park, (1999).

Google Scholar

[3] J.F. Nie, X. Gao, S.M. Zhu, Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn, Scripta Mater. 53 (2005) 1049-1053.

DOI: 10.1016/j.scriptamat.2005.07.004

Google Scholar

[4] T. Honma, T. Ohkubo, S. Kamado, K. Hono, Effect of Zn additions on the age-hardening of Mg-2. 0Gd-1. 2Y-0. 2Zr alloys, Acta Mater. 55 (2005) 4137-4150.

DOI: 10.1016/j.actamat.2007.02.036

Google Scholar

[5] X. Li, C. Liu, T. Al-Samman, Microstructure and mechanical properties of Mg-12Gd-3Y-0. 6Zr alloy upon conventional and hydrostatic extrusion, Mater. Lett. 65 (2011) 1726-1729.

DOI: 10.1016/j.matlet.2011.02.073

Google Scholar

[6] T. Homma, N. Kunito, S. Kamado, Fabrication of extraordinary high-strength magnesium alloy by hot extrusion, Script Mater. 61 (2009) 644-647.

DOI: 10.1016/j.scriptamat.2009.06.003

Google Scholar

[7] X. Zeng, Q. Wang, Y. Lü, W. Ding, Y. Zhu, C. Zhai, C. Lu, X. Xu, Behavior of surface oxidation on molten Mg-9Al-0. 5Zn-0. 3Be alloy, Mat. Sci. Eng. A, 301 (2001) 154-161.

DOI: 10.1016/s0921-5093(00)01798-6

Google Scholar

[8] X. Zeng, Q. Wang, Y. Lü, W. Ding, C. Lu, Y. Zhu, C. Zhai, X. Xu, Study of ignition proof magnesium alloy with beryllium and rare earth additions, Scripta Mater. 43 (2000) 403-409.

DOI: 10.1016/s1359-6462(00)00440-1

Google Scholar

[9] J.K. Lee, S.K. Kim, Effect of CaO Addition on the Ignition Resistance of Mg-Al Alloys, Mater. Trans. 52 (2011) 1483-1488.

DOI: 10.2320/matertrans.m2010397

Google Scholar

[10] Y. Kawamura, M. Yamasaki, Formation and Mechanical Properties of Mg97Zn1RE2 Alloys with Long-Period Stacking Ordered Structure, Mater. Trans. 48 (2007) 2986-2992.

DOI: 10.2320/matertrans.mer2007142

Google Scholar

[11] Information on https: /en. wikipedia. org/wiki/Pilling-Bedworth_ratio.

Google Scholar