Change in Characteristics of SiC MOSFETs by Gamma-Ray Irradiation at High Temperature

Article Preview

Abstract:

Radiation response of 4H-SiC vertical power Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) was investigated at 150°C up to 10.4 MGy. Until irradiation at 1.2 MGy, the drain current – gate voltage curves of the SiC MOSFETs shifted to the negative voltage side, and the leakage of drain current at gate voltages below threshold voltage increased with increasing absorbed dose. However, no significant change in the electrical characteristics of SiC MOSFETs was observed at doses above 1.2 MGy. For blocking characteristics, there were no degradations of the SiC MOSFETs irradiated at 150°C even after irradiated at 10.4 MGy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

860-863

Citation:

Online since:

May 2016

Export:

Price:

* - Corresponding Author

[1] J. Cooper, IEEE Trans. Electron Dev., 49, (2002) 658-664.

Google Scholar

[2] C. E. Weitzel, J. W. Palmour, C. H. Carter, K. Moore, K. J. Nordquist, S. Allen, C. Thero, M. Bhatnagar, IEEE Trans. Electron Dev., 43 (1996) 1732-1741.

DOI: 10.1109/16.536819

Google Scholar

[3] M. Bhatnagar, and B. J. Baliga, IEEE Trans. Electron Dev., 40 (1993) 645-655.

Google Scholar

[4] B. J. Baliga, IEEE Electron Dev. Lett., 10 (1989) 455-457.

Google Scholar

[5] T. Nakamura, M. Miura, N. Kawamoto, Y. Nakano, T. Otsuka, K. Oku-mura, and A. Kamisawa, Phys. Status Solidi A, 206 (2009) 2403-2416.

DOI: 10.1002/pssa.200925196

Google Scholar

[6] Y. Tanaka, S. Onoda, A. Takatsuka, T. Ohshima, and T. Yatsuo, Mater. Sci. Forum, 645-648 (2010) 941-944.

DOI: 10.4028/www.scientific.net/msf.645-648.941

Google Scholar

[7] S. Onoda, N. Iwamoto, S. Ono, S. Katakami, M. Arai, K. Kawano, and T. Ohshima, IEEE Trans. Nucl. Sci., 56 (2009) 3218-3222.

DOI: 10.1109/tns.2009.2032395

Google Scholar

[8] T. Chen, Z. Luo, J. D. Cressler, T. F. Isaacs-Smith, J. R. Williams, G. Chung, S. D. Clark, Solid-State Electronics, 46 (2002) 2231-2235.

DOI: 10.1016/s0038-1101(02)00236-8

Google Scholar

[9] T. Ohshima, H. Itoh, and M. Yoshikawa, J. Appl. Phys., 90 (2001) 3038-3041.

Google Scholar

[10] S. K. Dixit, S. Dhar, J. Rozen, S. Wang, R. D. Schrimpf, D. M. Fleetwood, S. T. Pantelides, J. R. Williams, and L. C. Feldman, IEEE Trans. Nucl. Sci., 53 (2006) 3687-3691.

DOI: 10.1109/tns.2006.885164

Google Scholar

[11] C. Zhang, E. Zhang, D. M. Fleetwood, R. D. Schrimpf, S. Dhar, S. Ryu, X. Shen, and S. T. Pantelides, IEEE Trans. Nucl. Sci., 58 (2011) 2925-2929.

DOI: 10.1109/tns.2011.2168424

Google Scholar

[12] A. Akturk, J. M. McGarrity, S. Potbhare, and N. Goldsman, IEEE Trans. Nucl. Sci., 59 (2012) 3258-3264.

DOI: 10.1109/tns.2012.2223763

Google Scholar

[13] D. C. Sheridan, G. Chung, S. Clark, and J. D. Cressler, IEEE Trans. Nucl. Sci., 48 (2001) 2229-2232.

Google Scholar

[14] T. Yokoseki, H. Abe, T. Makino, S. Onoda, Y. Tanaka, M. Kandori, T. Yoshie, Y. Hijikata, and T. Ohshima, Mater. Sci. Forum, 821-823 (2015) 705-708.

DOI: 10.4028/www.scientific.net/msf.821-823.705

Google Scholar

[15] P. J. McWhorter, and P. S. Winokur, Appl. Phys. Lett., 48 (1986) 133-135.

Google Scholar