Mechanical Properties and Microstructures of 5052 Al Alloy Processed by Asymmetric Cryorolling

Article Preview

Abstract:

Aluminum alloy sheets were asymmetrically rolled at room and cryogenic temperatures by imposing different velocity ratios of 1~1.5 between the upper and bottom rolls. After rolling, the stress-strain curves, microhardness as well as the microstructures of the rolled samples were characterized and analyzed. The experimental results showed that the asymmetric cryorolling could improve the grain refinement and offered (~12%) higher room temperature tensile strength than that processed by symmetrical rolling with velocity ration of 1.0 (~280 MPa). However, at cryogenic temperature, the strength of asymmetrically cryorolling sheet (with velocity ratio of 1.5) was 5.1%, which is less than that processed by symmetrical rolling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

823-828

Citation:

Online since:

March 2016

Export:

Price:

* - Corresponding Author

[1] R. Z. Valiev, N. A. Krasilnikov and N. K. Tsenev, Plastic Deformation of Alloy with Submicro-Grained Strucure, Mater. Sci. Eng. A 137 (1991) 35–40.

DOI: 10.1016/0921-5093(91)90316-f

Google Scholar

[2] R. Z. Valiev, E. V. Kozlov, Yu. F. Ivanov, J. Lian, A. A. Nazarov and B. Baudelet, Deformation Bechaviour of Ultra-Fine-Grained Copper, Acta Metall. Mater. 42 (1994) 2467–2475.

DOI: 10.1016/0956-7151(94)90326-3

Google Scholar

[3] M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev and T. G. Langdon, Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size, Acta Mater. 44 (1996) 4619–4629.

DOI: 10.1016/1359-6454(96)00105-x

Google Scholar

[4] K. Neishi, Z. Horita and T. G. Langdon, Grain Refinement of Pure Nickel Using Equal-Channel Angular Pressing, Mater. Sci. Eng. A 325 (2002) 54–58.

DOI: 10.1016/s0921-5093(01)01404-6

Google Scholar

[5] S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T. G. Langdon, Influence of Scandium and Zirconium on Grain Stability and Superplastic Ductilities in Ultrafine-Grained Al-Mg Alloys, Acta Mater. 50 (2002) 553–564.

DOI: 10.1016/s1359-6454(01)00368-8

Google Scholar

[6] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R. G. Hong, Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process, Scr. Mater. 39 (1998) 1221–1227.

DOI: 10.1016/s1359-6462(98)00302-9

Google Scholar

[7] N. Tsuji, Y. Saito, H. Utsunomiya, S. Tanigawa, Ultra-Fine Grained Bulk Steel Produced by Accumulative Roll-Bonding (ARB) Process, Scr. Mater. 40 (1999) 795–800.

DOI: 10.1016/s1359-6462(99)00015-9

Google Scholar

[8] N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Nanoscale Crystallographic Analysis of Ultrafine Grained IF Steel Fabricated by ARB Process, Scr. Mater. 47 (2002) 893–899.

DOI: 10.1016/s1359-6462(02)00088-x

Google Scholar

[9] R. Z. Abdulov, R. Z. Valiev, N. A. Krasilnikov, Formation of submicrometre-grained structure in magnesium alloy due to high plastic strains, J. Mater. Sci. Lett. 9(1990) 1445–1447.

DOI: 10.1007/bf00721611

Google Scholar

[10] R. Z. Valiev, Yu. V. Ivanisenko, E. F. Rauch, B. Baudelet, Structure and deformaton behaviour of Armco iron subjected to severe plastic deformation, Acta Mater. 44 (1996) 4705–4712.

DOI: 10.1016/s1359-6454(96)00156-5

Google Scholar

[11] A. Kawaek, J. Mater. Process. The theoretical and experimental analysis of the effect of asymmetrical rolling on the value of unit pressure, Technol 157–158, 531–535 (2004).

DOI: 10.1016/j.jmatprotec.2004.07.142

Google Scholar

[12] A. Kawalek, H. Dyja, S. Mroz, M. Knapinski, Effect of plate asymmetric rolling parameters on the change of the total unit pressure of roll, Metalurgija 50, 163–166 (2011).

Google Scholar

[13] R. Roumina, C. W. Sinclair, Deformation geometry and through-thickness strain gradients in asymmetric rolling, Metal. Mater. Trans. A 39, 2495–2503 (2008).

DOI: 10.1007/s11661-008-9582-6

Google Scholar

[14] FJ. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena. Oxford: Pergamon; 1996. P. 16.

Google Scholar

[15] Y. Wang, M. W. Chen, F. H. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature 419(31), 912–915 (2002).

DOI: 10.1038/nature01133

Google Scholar

[16] U. G. Gang, S. H. Lee, W. J. Nam. The Evolution of Microstructure and Mechanical Properties of a 5052 Aluminium Alloy by the Application of Cryogenic Rolling and Warm Rolling, Materials Transactions, 2009, 50(1): 82-86.

DOI: 10.2320/matertrans.md200801

Google Scholar

[17] K. P. Sushanta, R. J. Jayaganthan, Effect of ageing on microstructure and mechanical properties of bulk, cryorolled, and room temperature rolled Al 7075 alloy, Alloy. Comp 509, 9609–9616 (2011).

DOI: 10.1016/j.jallcom.2011.07.028

Google Scholar

[18] Y. T. Zhu, X. Z. Liao, Nanostructured metals, retaining ductility. Nature Mater 3, 351–352 (2004).

Google Scholar

[19] Y. H. Ji, J. J. Park,  Development of severe plastic deformation by various asymmetric rolling processes, Mater. Sci. Eng. A 499, 14–17 (2009).

DOI: 10.1016/j.msea.2007.11.099

Google Scholar

[20] T. N. Minh, J. Sidor, R. Petrov, L. A. Kestens, Texture Evolution during Asymmetrical Warm Rolling and Subsequent Annealing of Electrical Steel, Mater, Sci. Forum 702–703, 758–761 (2012).

DOI: 10.4028/www.scientific.net/msf.702-703.758

Google Scholar

[21] S. Wronski, B. Bacroix, Microstructure evolution and grain refinement in asymmetrically rolled aluminium, Acta Materialia, 2014, 76: 404-412.

DOI: 10.1016/j.actamat.2014.05.034

Google Scholar

[22] E. C. Moreno-Valle, I. Sabirov, M. T. Perez-Prado, M. Yu Murashkin, E. V. Bobruk, R. Z. Valiev, Effect of the grain refinement via severe plastic deformation on strength properties and deformation behavior of an Al6061 alloy at room and cryogenic temperatures, Mater. Let 65, 2917–2919 (2011).

DOI: 10.1016/j.matlet.2011.06.057

Google Scholar

[23] A.S. Keh, S. Weissmann, Electron Microscopy and Strength of Crystals, ed. G. Thomas, J. Washburn (Interscience, NY, 1963), 231-300.

Google Scholar

[24] Jung B. Singh, A. Sarkar, G. Sharma, J.K. Chakravatty, A Comparison of Dislocation Microstructures Formed during Sever Plastic Deformation of an Al-2. 5Mg Alloy at Room and Cryogenic Temperatures and Their Effect on Alloy's Room-Temperature Strength, TMS (The Minerals, Metals & Materials Society), 2012, 2: 805-811.

DOI: 10.1002/9781118357002.ch100

Google Scholar