Preparation and Properties of La-Doped BiFeO3 Thin Films

Article Preview

Abstract:

Bi1-xLaxFeO3(x=0, 0.3) thin films were deposited on glass/ITO substrates through Sol-Gel Dip-Coating method and rapid annealing process. The structures were detected by X-ray diffraction patterns, Raman spectrometer and scanning electron microscopy. The magnetic, ferroelectric and optical properties of the films were studied by vibrating sample magnetometer, ferroelectric integrate tester and photovoltaic performance testing system, respectively. The experimental results indicate that BiFeO3 thin film presents rhombohedral perovskite structure and Bi0.7La0.3FeO3 films showed distorted perovskite structure, which were confirmed by XRD patterns and Raman spectrometer. The magnetism and ferroelectric properties of the films were obviously enhanced by La doping. Furthermore, the photocurrent response and photovltaic effect in BLFO thin films were detected.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

645-651

Citation:

Online since:

March 2016

Export:

Price:

[1] W. Eerenstein, N. Mathur, and J. Scott, Multiferroic and magnetoelectric materials, Nature, 442 (2006) 759.

DOI: 10.1038/nature05023

Google Scholar

[2] Z.X. Cheng, X.L. Wang, C.V. Kannan, K. Ozawa, H. Kimura, T. Nishida, S.J. Zhang, and T.R. Shrout, Enhanced electrical polarization and ferromagnetic moment in a multiferroic BiFeO3/Bi3. 25Sm0. 75Ti2. 98V0. 02O12 double-layered thin film, Appl. Phys. Lett. 88 (2006).

DOI: 10.1063/1.2191732

Google Scholar

[3] J. Dho, X. Qi, H. Kim, J. L. MacManus-Driscoll, and M.G. Blamire, Large electric polarization and exchange bias in multiferroic BiFeO3, Adv. Mater. 18 (2006) 1445.

DOI: 10.1002/adma.200502622

Google Scholar

[4] J. Miao, X. Zhang, Q. Zhan, Y. Jiang, and K.H. Chew, Bi-relaxation behaviors in epitaxial multiferroic double-perovskite BiFe0. 5Mn0. 5O3/CaRuO3 heterostructures, Appl. Phys. Lett. 99 (2011) 062905.

DOI: 10.1063/1.3624847

Google Scholar

[5] J. Miao, B.P. Zhang, K.H. Chew, and Y. Wang, Improvement of ferroelectric fatigue endurance in multiferroic (Ba0. 5Sr0. 5)TiO3/(Bi1. 05La0. 05) FeO3/( Ba0. 5Sr0. 5)TiO3 sandwich structures, Appl. Phys. Lett. 92 (2008) 062902.

DOI: 10.1063/1.2841672

Google Scholar

[6] S. Niitaka, M. Azuma, M. Takano, E. Nishibori, M. Takata, and M. Sakata, Crystal structure and dielectric and magnetic properties of BiCrO3 as a ferroelectromagnet, Solid State Ion. 172 (2004) 557.

DOI: 10.1016/j.ssi.2004.01.060

Google Scholar

[7] P. Fischer, M. Połomska, I. Sosnowska, and M. Szyman´ ski, Temperature dependence of the crystal and magnetic structures of BiFeO3, Physica C: Solid State Phys. 13 (1980) (1931).

Google Scholar

[8] T. Choi, S. Lee, Y. Choi, V. Kiryukhin, and S. Cheong, Swichable ferroelectric diode and photovoltaic effect in BiFeO3, Science. 324 (2009) 63.

DOI: 10.1126/science.1168636

Google Scholar

[9] W. Ji, K. Yao, and Y. Liang, Bulk Photovoltaic Effect at Visible Wavelength in Epitaxial Ferroelectric BiFeO3 Thin Films. Adv. Mater. 22 (2010) 1763.

DOI: 10.1002/adma.200902985

Google Scholar

[10] H.T. Yi, T. Choi, S.G. Choi, Y.S. Oh, and S.W. Cheong, Mechanism of the Switchable Photovoltaic Effect in Ferroelectric BiFeO3, Adv. Mater. 23 (2011) 3403.

DOI: 10.1002/adma.201100805

Google Scholar

[11] S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer1, C.H. Yang, M.D. Rossell, P. Yu, Y.H. Chu, J.F. Scott, J.W. Ager III, L.W. Martin, and R. Ramesh, Above-bandgap voltages from ferroelectric photovoltaic devices, Nature. Nanotechnol. 5 (2010) 143.

DOI: 10.1038/nnano.2009.451

Google Scholar

[12] S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.H. Chu, C.H. Yang, J.L. Musfeldt, D.G. Schlom, J.W. Ager III, and R. Ramesh, The effect of SrTiO3 substrate orientation on the surface morphology and ferroelectric properties of pulsed laser deposited NaNbO3 films, Appl. Phys. Lett. 95 (2009).

DOI: 10.1063/1.3204695

Google Scholar

[13] J. Seidel, D. Fu, S.Y. Yang, O.L. Alarc, J. Wu, R. Ramesh, and J.W. Ager III, Efficient photovoltaic current generation at ferroelectric domain wall, Phys. Rev. Lett. 107 (2011) 126805.

DOI: 10.1103/physrevlett.107.126805

Google Scholar

[14] D. Lee, M.G. Kim, S. Ryu, H.M. Jang, and S.G. Lee, Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films, Appl. Phys. Lett. 86 (2005) 222903.

DOI: 10.1063/1.1941474

Google Scholar

[15] Y.H. Lee, J.M. Wu, and C.H. Lai, Influence of La doping in multiferroic properties of BiFeO3 thin films, Appl. Phys. Lett. 88 (2006) 042903.

Google Scholar

[16] S.H. Jo, S.G. Lee, and Y.H. Lee, Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel methed, Nanoscale Res. Lett. 7 (2012) 54.

DOI: 10.1186/1556-276x-7-54

Google Scholar

[17] R. Seshadri, and N.A. Hill, Visualizing the role of Bi 6s Lone Pairs, in the off-center distortion in ferromagnetic BiMnO3, Chem. Mater. 13 (2001) 2892.

DOI: 10.1021/cm010090m

Google Scholar

[18] A.M. Kadomtseva, Y.F. Popov, T.V. Schogoleva, G.P. Vorob`ev, A.K. Zvezdin, I.S. Dubenko, V.A. Murashov, and D.N. Rakov, High magnetic field investigations of the magnetoelectric effect in magnetic ferroelectrics (RBi)FeO3, Ferroelectrics. 169 (1995).

DOI: 10.1080/00150199508217318

Google Scholar

[19] V.A. Khomchenko, D.V. Karpinsky, A.L. Kholkin, N.A. Sobolev, G.M. Kakazzei, J.P. Araujo, I.O. Troyanchuk, B.F.O. Costa, and J.A. Paixao, Rhombohedral-to-orthorhombic transition and multiferroic properties of Dy-substituted BiFeO3, J. Appl. Phys. 108 (2010).

DOI: 10.1063/1.3486500

Google Scholar

[20] I.O. Troyanchuk, M.V. Bushinsky, N.V. Tereshko, and M.I. Kovetskaya, Conditions favoring the polar weak ferromagnetic state in BiFeO3-type multiferroics, J. JETP Lett. 93 (2011) 512.

DOI: 10.1134/s0021364011090141

Google Scholar

[21] X.D. Qi, J. H. Dho, R. Tomov, M.G. Blamire, L. Judith, and M.M. DriscollL, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3, Appl. Phys. Lett. 88 (2005) 062903.

DOI: 10.1063/1.1862336

Google Scholar

[22] P. Hermet, M. Goffinet, J. Kreisel, and Ph. Ghosez, Raman and infrared spectra of multiferroic bismuth ferrite from first principles, Phys. Rev. B. 75(2007) 220102(R).

DOI: 10.1103/physrevb.75.220102

Google Scholar

[23] F.J. Liu, S.Y. Chen, and Z.G. Huang, Effects of Ba-doping and process conditions on the structure and magnetic properties of BiFeO3 ceramics, Acta Phys. Sin. 63 (2014) 085101.

DOI: 10.7498/aps.63.085101

Google Scholar

[24] T.J. Park, Y.B. Mao, and S.S. Wong, Synthesis and characterization of multiferroic BiFeO3 nanotubes, J. Chem Commun. 23 (2004) 2708-(2079).

DOI: 10.1039/b409988e

Google Scholar

[25] C. Ederer, and N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite, Phys. Rev. B. 71 (2005) 060401.

DOI: 10.1103/physrevb.71.060401

Google Scholar

[26] J.T. Heron, J.L. Bosse, Q. He, Y. Gao, M. Trassin, L. Ye, J. D. Clarkson, C. Wang, J. Liu, S. Salahuddin, D.C. Ralph, D.G. Schlom, J. Iniguez, B.D. Huey, and R. Ramesh, Deterministic switching of ferromagnetism at room temperature using an electric field, Nature. 516 (2014).

DOI: 10.1038/nature14004

Google Scholar

[27] C.F. Chung, J.P. Lin, and J.M. Wu, Influence of Mn and Nb Dopants on Electric Properties of Chemical-Solution-Deposited BiFeO3 Films, Appl. Phys. Lett. 88 (2006) 2429091.

DOI: 10.1063/1.2214138

Google Scholar