Study on the Identification of Adulteration of Polycarbonate Drinking Bottles with Postconsumer Recycled Plastics

Article Preview

Abstract:

Adulteration of polycarbonate (PC) drinking bottles with postconsumer recycled PC materials was considerably difficult to identify due to similar chemical compositions and minute differences between virgin and recycled PC materials. In the present study, UV/Vis spectroscopy coupled with GC-MS analysis was carried out to identify the adulteration with recycled materials in PC drinking bottles. The minimum adulterating level which could be detected was 20 %. This strategy represents a rapid and promising analytical method for screening the adulteration of PC drinking bottles with postconsumer recycled plastics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

184-188

Citation:

Online since:

March 2016

Export:

Price:

* - Corresponding Author

[1] X.H. Cao, S.J. Ji, Migration study of bisphenol A from tea bottle of polycarbonate plastic to tea water, Adv. Mater. Res. 821-822(2013) 929-932.

DOI: 10.4028/www.scientific.net/amr.821-822.929

Google Scholar

[2] C. Kubwabo, I. Kosarac, B. Stewart, B.R. Gauthier, K. Lalonde, P.J. Lalonde, Migration of bisphenol A from plastic baby bottles, baby bottle liners and reusable polycarbonate drinking bottles, Food Addit. Contam. A. 26(2009) 928-937.

DOI: 10.1080/02652030802706725

Google Scholar

[3] B.L. Tan, A.M. Mustafa, Leaching of bisphenol A from new and old babies' bottles, and new babies' feeding teats, Asia-Pac. J. Public He. 15(2003) 118-123.

DOI: 10.1177/101053950301500208

Google Scholar

[4] I. Reinas, J. Oliveira, J. Pereira, F. Machado, M.F. Pocas, Migration of two antioxidants from packaging into a solid food and into Tenax, Food Control. 28(2012) 333-337.

DOI: 10.1016/j.foodcont.2012.05.023

Google Scholar

[5] T. Yamamoto, A. Yasuhara, Quantities of bisphenol A leached from plastic waste samples, Chemosphere, 38(1999) 2569-2576.

DOI: 10.1016/s0045-6535(98)00464-0

Google Scholar

[6] S.H. Nam, Y.M. Seo, M.G. Kim, Bisphenol A migration from polycarbonate baby bottle with repeated use, Chemosphere, 79(2010) 949-952.

DOI: 10.1016/j.chemosphere.2010.02.049

Google Scholar

[7] N.C. Maragou, A. Makri, E.N. Lampi, N.S. Thomaidis, M.A. Koupparis, Migration of bisphenol A from polycarbonate baby bottles under real use conditions, Food Addit. Contam. 25(2008) 373-383.

DOI: 10.1080/02652030701509998

Google Scholar

[8] L.G. Xie, H.M. Sun, S.H. Jin, Screening adulteration of polypropylene bottles with postconsumer recycled plastics for oral drug package by near-infrared spectroscopy, Anal. Chim. Acta, 706(2011) 312-320.

DOI: 10.1016/j.aca.2011.06.009

Google Scholar

[9] S. Hata, H. Goto, E. Yamada, A. Oku, Chemical conversion of poly (carbonate) to 1, 3-dimethyl-2-imidazolidinone (DMI) and bisphenol A: a practical approach to the chemical recycling of plastic wastes, Polymer, 43(2002) 2109-2116.

DOI: 10.1016/s0032-3861(01)00800-x

Google Scholar

[10] A. Rivaton, Recent advances in bisphenol-A polycarbonate photodegradation, Polym. Degrad. Stabil. 49(1995) 163-179.

DOI: 10.1016/0141-3910(95)00069-x

Google Scholar

[11] B.N. Jang, C.A. Wilkie, The thermal degradation of bisphenol A polycarbonate in air, Thermochim. Acta, 426(2005) 73-84.

DOI: 10.1016/j.tca.2004.07.023

Google Scholar

[12] M. Diepens, P. Gijsman, Photodegradation of bisphenol A polycarbonate. Polym. Degrad. Stabil. 92(2007) 397-406.

DOI: 10.1016/j.polymdegradstab.2006.12.003

Google Scholar

[13] G.F. Tjandraatmadja, L.S. Burn, M.C. Jollands, Evaluation of commercial polycarbonate optical properties after QUV-A radiation-the role of humidity in photodegradation, Polym. Degrad. Stabil. 78(2002) 435-448.

DOI: 10.1016/s0141-3910(02)00179-9

Google Scholar

[14] M. Diepens, P. Gijsman, Outdoor and accelerated weathering studies of bisphenol A polycarbonate, Polym. Degrad. Stabil, 96(2011) 649-652.

DOI: 10.1016/j.polymdegradstab.2010.12.009

Google Scholar

[15] A. Rivaton, D. Sallet, J. Lemaire, The photochemistry of bisphenol-A polycarbonate reconsidered, Polym. Photoch. 3(1983) 463-481.

DOI: 10.1016/0144-2880(83)90102-1

Google Scholar

[16] S.L. Zhang, H.Y. Zhao, Study on flavonoid migration from active low-density polyethylene film into aqueous food simulants, Food Chem. 157(2014) 45-50.

DOI: 10.1016/j.foodchem.2014.02.018

Google Scholar

[17] J. Alin, M. Hakkarainen, Migration from polycarbonate packaging to food simulants during microwave heating, Polym. Degrad. Stabil. 97(2012) 1387-1395.

DOI: 10.1016/j.polymdegradstab.2012.05.017

Google Scholar

[18] J. Lopez-Cervantes, D.I. Sanchez-Machado, P. Paseiro-Losada, J. Simal-Lozano, Effects of compression, stacking, vacuum packing and temperature on the migration of bisphenol A from polyvinyl chloride packaging sheeting into food simulants, Chromatographia, 58(2003).

DOI: 10.1365/s10337-003-0035-5

Google Scholar

[19] F. Vilaplana, A. Ribes-Greus, S. Karlsson, Analytical strategies for the quality assessment of recycled high-impact polystyrene: A combination of thermal analysis, vibrational spectroscopy, and chromatography, Anal. Chim. Acta. 604(2007) 18-28.

DOI: 10.1016/j.aca.2007.04.046

Google Scholar

[20] J. Moller, E. Stromberg, S. Karlsson, Comparison of extraction methods for sampling of low molecular compounds in polymers degraded during recycling, Eur. Polym. J. 44(2008) 1583-1593.

DOI: 10.1016/j.eurpolymj.2008.03.027

Google Scholar

[21] W. Camacho, S. Karlsson, Quality-determination of recycled plastic packaging waste by identification of contaminants by GC-MS after microwave assisted extraction (MAE), Polym. Degrad. Stabil. 71(2001) 123-134.

DOI: 10.1016/s0141-3910(00)00163-4

Google Scholar