Dielectric and Conduction Processes and Behaviours in Ni0.3Zn0.7Fe2O4

Article Preview

Abstract:

Dielectric relaxation and conductivity of Ni0.3Zn0.7Fe2O4 (NZF) were studied in the frequency range between 0.01 Hz to 3 MHz and temperature range within 313 K to 473 K. The sample was prepared by mixing Zinc Oxide, Nickel Oxide and Iron Oxide and sintered at 1573 K for 10 hours long. Dielectric properties were studied using Novo Control Dielectric Spectrometer. Dielectric relaxation and conductivity phenomena were discussed using an empirical model to key out the dielectric relaxation process. Analyze peak frequency relaxation process consist of four slopes to explain the dielectric relaxation process. The conductivity of the sample indicates an activated process and activation energy of dc conductivity is 0.44 ± 0.01 eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

311-317

Citation:

Online since:

March 2016

Export:

Price:

[1] G. Sathiskumar, C. Venkataraju and K. Sivakumar, Synthesis, Structural and Dielectric Studies of Nickel Substituted Cobalt-Zinc Ferrite, Mater. Sci. and Appl. 1(2010) 19-24.

DOI: 10.4236/msa.2010.11004

Google Scholar

[2] P.I. Slick, Ferromagnetic Materials, North-Holland, Amterdam, 1980, pp.213-218.

Google Scholar

[3] A. S. Albuquerque, J. D. Ardisson, W. A. A. Macedo and M. C. M. Alves, Nanosized powders of NiZn ferrite: Synthesis, structure and magnetism, J. Appl. Phys. 87(2000) 4352-4358.

DOI: 10.1063/1.373077

Google Scholar

[4] P. S. A. Kumar, J. J. Shrotri, S. D. Kulkarni, C. E. Deshpande and S. K. Date, Low temperature synthesis of Ni0. 8Zn0. 2Fe2O4 powder and its characterization, Matter. Lett. 27(1996) 293-296.

DOI: 10.1016/0167-577x(96)00010-9

Google Scholar

[5] S. Gubala, H. Nathani, K. Koziol and R. D. K. Misra, Magnetic Properties of Nanocrystalline Ni-Zn, Zn-Mn and Ni-Mn Ferrites Synthesized by Reverse Micelle Technique, Physica B : Condense Matter. 348 (2004) 317-328.

DOI: 10.1016/j.physb.2003.12.017

Google Scholar

[6] R. M. Hill and C. Pickup, Barrier effect in dispersive media. Journal of Materials Science, 20(1985) 4431 – 4444.

DOI: 10.1007/bf00559332

Google Scholar

[7] J. D. Livingston, Electronic Properties of Engineering Materials, John Wiley and Sons, New York, 1999, pp.153-159.

Google Scholar

[8] A.K. Joncher, Universal Relaxation Law, Chelsea Dielectrics Press, London, 1996, pp.294-299.

Google Scholar

[9] G.G. Raju, Dielectrics in Electric Fields, Marcel Dekker, Inc, New York 2003, pp.138-143.

Google Scholar

[10] E. Tuncer and S. M. Gubanski, Electrical properties of filled silicone rubber, J. Phys: Condens Matter. 12(2000) 1873 – 1897.

DOI: 10.1088/0953-8984/12/8/330

Google Scholar

[11] A.K. Joncher, Dielectric Relaxation in Solids, Chelsea Dielectrics Press, London 1983, pp.161-193.

Google Scholar

[12] Mohd Noor Mat, W. M.M. Yunus, W. M. Daud and A. H. Zainul, Impedance Spectroscopy of Epoxydized Natural Rubber, Pertanika J. Sci. & Technol. 11(2003) 9-16.

Google Scholar

[13] A. Mustaffa and A. N. Yusoff, Microstructural and Dielectric Properties of Ni-Zn and Li-Ni-Zn Ferrites by Impedance Spectroscopy, Pertanika J. Sci. & Technol. 6(1998) 95-105.

Google Scholar

[14] G. R. Mohan, D. Ravinder, A. V. R. Reddy and B. S. Boyanov, Dielectric Properties of Polycrystalline Mixed Nickel-Zinc Ferrites, Matter. Lett. 40(1999) 39 - 45.

DOI: 10.1016/s0167-577x(99)00046-4

Google Scholar

[15] K. Morigaki, Physics of Amorphous Semiconductors, Imperial College Press, Singapore 1999, pp.114-122.

Google Scholar

[16] D. G. Chen, X. G. Tang, Q. X. Liu, Y. P. Jiang, C. B. Ma and R. Li, Impedance response and dielectric relaxation in co-precipitation derived ferrite (Ni, Zn)Fe2O4 ceramics, J. Appl. Phys. 113 (2013) 214110.

DOI: 10.1063/1.4809541

Google Scholar

[17] L. Zhigao, J. P. Bonnet, J. Ravez, J. M. Reau and P. Hagenmuller, Impedence Study of Pb2KNb5O15 Ferroelectric Ceramics, J. Phys. Chem. Solids. 53(1992) 1- 9.

DOI: 10.1016/0022-3697(92)90004-w

Google Scholar