Superplastic Deformation Mechanisms in High Magnesium Contenting Aluminum Alloy

Article Preview

Abstract:

The evolution of surface, grains and dislocation structures during superplastic deformation was studied in Al–6.8%Mg–0.6%Mn–0.25%Cr alloy by SEM, EBSD, TEM techniques. The effective activation energy of superplastic deformation was calculated. Contribution of grain boundary sliding was defined during superplastic deformation. Low value of grain boundary sliding, significant dynamic grain growth in stress direction, high dislocations activity and permanent continuous formation of sub-grain boundaries during superplastic deformation were found.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 838-839)

Pages:

66-71

Citation:

Online since:

January 2016

Export:

Price:

* - Corresponding Author

[1] A.A. Bochvar, Z.A. Sviderskaya, Superplasticity in Zinc-Aluminum Alloys, Izv. Akad. Nauk SSSR, Otdel. Tekh. Nauk, 9 (1945) 821-827.

Google Scholar

[2] C.E. Pearson, The viscous properties of extruded eutectic alloys of lead-tin and bismuth-tin, J. Inst. Met. 54 (1934) 111–123.

Google Scholar

[3] I.I. Novikov, V.K. Portnoy, Superplastizitat von Legierungen. VEB Deutscher Verlag fur Grundstoffindustrie. Leipzig, (1984).

Google Scholar

[4] T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, (1997).

Google Scholar

[5] I.I. Novikov, V.K. Portnoy, V.S. Levchenko, A.O. Nikiforov, Superplastic-Ilke Behavior of Coarse-Grained Single Phase Aluminium Alloys, Mater. Sci. Forum, 463 (1997) 243–245.

DOI: 10.4028/www.scientific.net/msf.170-172.71

Google Scholar

[6] K. Sotoudeh, P.S. Bate, Diffusion creep and superplasticity in aluminium alloys, Acta Mater, 58 (2010) 1909–(1920).

DOI: 10.1016/j.actamat.2009.11.034

Google Scholar

[7] P.L. Blackwell, P.S. Bate, Superplastic Deformation without Relative Grain Translation?, Mater. Sci. Forum 304–306 (1999) 189–194.

DOI: 10.4028/www.scientific.net/msf.304-306.189

Google Scholar

[8] I. I. Novikov, V. К. Portnoy, А. О. Titov, D. Yu. Belov, Dynamic rerystallization at superplastic deformation of duralumin with initial recristallized structure, Scr. materialia. 42 (2000) 899–904.

DOI: 10.1016/s1359-6462(00)00310-9

Google Scholar

[9] V.S. Levchenko, V.K. Portnoy, I.I. Novikov, in: S. Hori, M. Tokizane, N. Furushiro (Eds. ), Superplasticity in Advanced Materials, The Japan Society for Research on Superplasticity, Osaka, (1991).

Google Scholar

[10] N. Patankar, T.M. Jen. Strain Rate Insensitive Plasticity in Aluminum Alloy 5083, Scr. Materialia, 38, 8 (1998), 1255–1261.

DOI: 10.1016/s1359-6462(98)00017-7

Google Scholar

[11] V.K. Portnoy, D.S. Rylov, V.S. Levchenko, A.V. Mikhaylovskaya, The influence of chromium on the structure and superplasticity of Al–Mg–Mn alloys, J. of Alloys and Compounds, 581 (2013) 313–317.

DOI: 10.1016/j.jallcom.2013.07.075

Google Scholar

[12] D.G. Attwood, P.M. Hazzledine, A Fiducial Grid for High-Resolution Metallography, Metallography, 9 (1976) 483-501.

DOI: 10.1016/0026-0800(76)90016-1

Google Scholar

[13] M.A. Rust, R.I. Todd, Surface studies of Region II superplasticity of AA5083 in shear: Confirmation of diffusion creep, grain neighbor switching and absence of dislocation activity, Acta Materialia, 59 (2011) 5159–5170.

DOI: 10.1016/j.actamat.2011.04.051

Google Scholar

[14] M.A. Rust, R.I. Todd, High Resolution Surface Studies of Superplastic Deformation, Mater. Sci. Forum. 551-552 (2007) 615-620.

DOI: 10.4028/www.scientific.net/msf.551-552.615

Google Scholar

[15] M.A. Rust, R.I. Todd, High Resolution Surface Studies of Superplastic Deformation in Shear and Tension, Materialwiss. Werkst. 39 (2008) 289-292.

DOI: 10.1002/mawe.200800291

Google Scholar

[16] A.V. Mikhaylovskaya, O.A. Yakovtseva, I.S. Golovin, A.V. Pozdniakov, V.K. Portnoy, Superplastic deformation mechanisms in fine-grained Al–Mg based alloys, Mat. Sci. & Eng. A 627 (2015) 31–41.

DOI: 10.1016/j.msea.2014.12.099

Google Scholar

[17] N. Yao, Focused Ion Beam Systems: Basics and Applications, New York: Cambridge University Press, (2007).

Google Scholar

[18] V.K. Portnoy, I.I. Novikov, Evaluation of grain boundary sliding contribution to the total strain during superplastic deformation, Scripta Materialia, 40, 1 (1999) 39–43.

DOI: 10.1016/s1359-6462(98)00394-7

Google Scholar

[19] C. Zener, J.H. Hollomon, Effect of strain rate upon plastic flow of steel J. Appl. Phys. 11 (1944) 22–32.

DOI: 10.1063/1.1707363

Google Scholar

[20] C.M. Sellars, W.J. McTegart, On the mechanism of hot deformation, Acta Metall. 14 (1966) 1136–1138.

DOI: 10.1016/0001-6160(66)90207-0

Google Scholar

[21] A. K. Ghosh, A New Physical Model for Superplastic Flow. Materials Science Forum 39 (1994) 170-172.

DOI: 10.4028/www.scientific.net/msf.170-172.39

Google Scholar