A Comparative Study on the Role of Precursors of Graphitic Carbon Nitrides for the Photocatalytic Degradation of Direct Red 81

Article Preview

Abstract:

The graphitic carbon nitride (g-C3N4) materials have been synthesized from nitrogen rich precursors such as urea and thiourea by directly heating at 520 °C for 2 h. The as-synthesized carbon nitride samples were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-vis) absorption spectroscopy, photoluminescence (PL) and particle size analysis. The photoelectrochemical measurements were performed using several on-off cycles under visible-light irradiation. The x-ray diffraction peak is broader which indicates the fine powder nature of the synthesized materials. The estimated crystallite size of carbon nitrides synthesized from urea (U-CN) and thiourea (T-CN) are 4.0 and 4.4 nm respectively. The particle size of U-CN and T-CN were analysed by particle size analyser and were found to be 57.3 and 273.3 nm respectively. The photocatalytic activity for the degradation of the textile dye namely, direct red-81 (DR81) using these carbon nitrides were carried out under visible light irradiation. In the present investigation, a comparison study on the carbon nitrides synthesized from cheap precursors such as urea and thiourea for the degradation of DR81 has been carried out. The results inferred that U-CN exhibited higher photocatalytic activity than T-CN. The photoelectrochemical studies confirmed that the (e--h+) charge carrier separation is more efficient in U-CN than that of T-CN and therefore showed high photocatalytic degradation. Further, the smaller particle size of U-CN is also responsible for the observed degradation trend.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-113

Citation:

Online since:

November 2014

Export:

Price:

* - Corresponding Author

[1] A.A. Ashkarrana, H. Hamidinezhadb, H. Haddadic, M. Mahmoudid, TiO2 nanoparticles as an efficient visible-light-active photocatalyst and antibacterial agent under solar simulated light, Applied Surface Science 301 (2014) 338–345.

DOI: 10.1016/j.apsusc.2014.02.074

Google Scholar

[2] C. Liu, T. Yang, C. Wang, C. Chien, S. Chen, C. Wang, W. Leng, Y. Hwu, H. Lin, Y. Lee, C. Cheng, J. Le, Enhanced photocatalysis, colloidal stability and cytotoxicity of synchrotron X-ray synthesized Au/TiO2 nanoparticles, Materials Chemistry and Physics 117 (2009).

DOI: 10.1016/j.matchemphys.2009.05.030

Google Scholar

[3] M. Pudukudy, Z. Yaakob, Facile solid state synthesis of ZnO hexagonal nanogranules with excellent photocatalytic activity, Applied Surface Science 292 (2014) 520–530.

DOI: 10.1016/j.apsusc.2013.12.004

Google Scholar

[4] E.K. Goharshadi, M. Hadadian, M. Karimi, H.A. Toupkanloo, Photocatalytic degradation of reactive black 5 azo dye by zinc sulfide quantum dots prepared by a sonochemical method, Materials Science in Semiconductor Processing 16 (2013) 1109–1116.

DOI: 10.1016/j.mssp.2013.03.005

Google Scholar

[5] Y. Moriya, T. Takata, K. Domen, Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation, Coordination Chemistry Reviews 257 (2013) 1957-(1969).

DOI: 10.1016/j.ccr.2013.01.021

Google Scholar

[6] U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review, Journal of Hazardous Materials170 (2009) 520–529.

DOI: 10.1016/j.jhazmat.2009.05.039

Google Scholar

[7] M.L. Cohen, Calculation of bulk moduli of diamond and zinc-blende solids, Physical Review B 32 (1985) 7988-7991.

DOI: 10.1103/physrevb.32.7988

Google Scholar

[8] A.Y. Liu, M.L. Cohen, Structural properties and electronic structure of low-compressibility materials: β-Si3N4 and hypothetical β-C3N4, Physical Review B 41 (1990) 10727-10734.

Google Scholar

[9] Y. Wang, X. Wang, M. Antonietti, Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry, Angewandte Chemie International Edition 51 (2012) 68–89.

DOI: 10.1002/anie.201101182

Google Scholar

[10] M.B. Ansari, H. Jin, S.E. Park, Carbon dioxide augmented oxidation of aromatic alcohols over mesoporous carbon nitride as a metal free catalyst, Catalysis Science and Technology 3 (2013) 1261-1266.

DOI: 10.1039/c3cy20869a

Google Scholar

[11] B.H. Min, M.B. Ansari, Y.H. Mo, S.E. Park, Mesoporous carbon nitride synthesized by nanocasting with urea/formaldehyde and metal-free catalytic oxidation of cyclic olefins, Catalysis Today 204 (2013) 156-163.

DOI: 10.1016/j.cattod.2012.07.027

Google Scholar

[12] H. Ji, F. Chang, X. Hu, W. Qin, J. Shen, Photocatalytic degradation of 2, 4, 6-trichlorophenol over g-C3N4 under visible light irradiation, Chemical Engineering Journal 218 (2013) 183-190.

DOI: 10.1016/j.cej.2012.12.033

Google Scholar

[13] J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Simple pyralysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity, Journal of Materials Chemistry 21 (2011) 14398-14401.

DOI: 10.1039/c1jm12620b

Google Scholar

[14] F. Chang, Y. Xie, C. Li, J. Chen, J. Luo, X. Hu, J. Shen, A facile modification of g-C3N4 with enhanced photocatalytic activity for degradation of methylene blue, Applied Surface Science 280 (2013) 967-974.

DOI: 10.1016/j.apsusc.2013.05.127

Google Scholar

[15] M. Zhang, J. Xu, R. Zong, Y. Zhu, Enhancement of visible light photocatalytic activities via porous structure of g-C3N4, Applied Catalysis B: Environmental 147 (2014) 229– 235.

DOI: 10.1016/j.apcatb.2013.09.002

Google Scholar

[16] S.C. Lee, H.O. Lintang, L. Yuliati, A Urea Precursor to Synthesize Carbon Nitride with Mesoporosity for Enhanced Activity in the Photocatalytic Removal of Phenol, Chemistry – An Asian Journal 7 (2012) 2139-2144.

DOI: 10.1002/asia.201200383

Google Scholar

[17] A. Thomas, A. Fischer, M. Antonietti, J. Muller, R. Schlogl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, Journal of Material Chemistry 18 (2008) 4893-4908.

DOI: 10.1039/b800274f

Google Scholar

[18] J. Xu, K. Shen, B. Xue, Y.X. Li, Microporous carbon nitride as an effective solid base catalyst for knoevenagal condensation reactions, Journal of Molecular Catalysis A: Chemical 372 (2013) 105-113.

DOI: 10.1016/j.molcata.2013.02.019

Google Scholar

[19] Y. Zhong, Z. wang, J. Feng, S. Yan, H. Zhang, Z. Li, Z. Zou, Improvement in photocatalytic H2 evolution over g-C3N4 prepared from protonated melamine, Applied Surface Science 295 (2014) 253-259.

DOI: 10.1016/j.apsusc.2014.01.008

Google Scholar

[20] J. Zhang, M. Zhang, S. Lin, X. Fu, X. Wang, Molecular doping of carbon nitride photocatalysts with tunable bandgap and enhanced activity, Journal of Catalysis 310 (2014) 24–30.

DOI: 10.1016/j.jcat.2013.01.008

Google Scholar

[21] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir 25 (2009) 10397-10401.

DOI: 10.1021/la900923z

Google Scholar

[22] G. Zhang, J. Zhang, M. Zhang, X. Wang, Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts, Journal of Material Chemistry 22 (2012) 8083-8091.

DOI: 10.1039/c2jm00097k

Google Scholar

[23] F. Dong, Y. Sun, L. Wu, M. Fu, Z. Wu, Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance, Catalysis Science and Technology 2 (2012) 1332-1335.

DOI: 10.1039/c2cy20049j

Google Scholar

[24] S. Podsiadlo, Stages of the synthesis of indium nitride with the use of urea, Thermochimica Acta 256 (1995) 375-380.

DOI: 10.1016/0040-6031(94)02025-j

Google Scholar

[25] B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Reading, MA, 1956, pp.98-99.

Google Scholar

[26] J. Madhavan, P. Maruthamuthu, S. Murugesan, M. Ashokkumar, Kinetics of degradation of acid red 88 in the presence of Co2+-ion/peroxomonosulphate reagent, Applied Catalysis A: General 368 (2009) 35-39.

DOI: 10.1016/j.apcata.2009.08.008

Google Scholar

[27] W. Sucasaire, M. Matsuoka, K.C. Lopes, J.C.R. Mittani, L.H. Avanci, J.F.D. Chubaci, N. Added, V. Trava, E.J. Corat, Raman and infrared spectroscopy studies of carbon nitride films prepared on Si (100) substrates by Ion beam assisted deposition, Journal of the Brazilian Chemical Society 17 (2006).

DOI: 10.1590/s0103-50532006000600014

Google Scholar

[28] X. Li, J. Zhang, L. Shen, Y. Ma, W. Lei, Q. Cui, G. Zou, Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine, Applied Physics A 94 (2009) 387-392.

DOI: 10.1007/s00339-008-4816-4

Google Scholar

[29] V.N. Khabashesku, J.L. Zimmerman, J.L. Margrave, Powder Synthesis and Characterization of Amorphous Carbon Nitride, Chemistry of Materials 12 (2000) 3264-3270.

DOI: 10.1021/cm000328r

Google Scholar

[30] M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, M. Antonietti, Improving carbon nitride photocatalysis by supramolecular preorganization of monomers, Journal of the American Chemical Society 135 (2013) 7118-7121.

DOI: 10.1021/ja402521s

Google Scholar

[31] S.K. Pardeshi, A.B. Patil, Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method, Journal of Molecular Catalysis A: Chemical 308 (2009) 32-40.

DOI: 10.1016/j.molcata.2009.03.023

Google Scholar