Reviews on Clay Geopolymer Ceramic Using Powder Metallurgy Method

Article Preview

Abstract:

Inorganic polymers, commonly referred as geopolymers, are alumino-silicate materials which display superior physical and chemical properties with a diverse range of possible potential applications. Pure geopolymer matrix posses relatively low mechanical properties. The improvement on the properties can be made by focusing on the generation of ceramics from geopolymer. It’s a new world to explore yet with superior properties. The results showed the best curing temperature for clay geopolymers were at 60°C since it gained a fast initial setting. The hardened geopolymer clay will encounter physical metallurgy technique to be produced as geopolymer ceramic due to various high sintering temperature. It is proven that throughout heating the amorphous geopolymer transforms into crystalline phases with pure geopolymers demonstrates excessive shrinkage when sintered between 850 and 1000 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-87

Citation:

Online since:

August 2014

Export:

Price:

* - Corresponding Author

[1] Kwesi S. -C. Pre De Silva, Medium-term phase stability of Na2O–Al2O3–SiO2–H2Ogeopolymer systems. Cement and Concrete Research 2008; 38: 870-876.

DOI: 10.1016/j.cemconres.2007.10.003

Google Scholar

[2] P. Sun, Fly Ash Based Inorganic Polymeric Building Material, Doctor of Philosophy, Wayne State University, Detroit, Michigan, (2005).

Google Scholar

[3] H. K. Y.M. Liew, A.M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, C.Y. Heah, Optimization of solids-to-liquid and alkali activator ratios of calcined kaolin geopolymeric powder. Construction and Building Materials 2012; 37: 440-451.

DOI: 10.1016/j.conbuildmat.2012.07.075

Google Scholar

[4] Claudio Ferone, Giuseppina Roviello, Francesco Colangelo, Raffaele Cioffi, Oreste Tarallo, Novel hybrid organic-geopolymer materials. Applied Clay Science 2013; 73: 42-60.

DOI: 10.1016/j.clay.2012.11.001

Google Scholar

[5] Jonathan L. Bell, Patrick E. Driemeyer and Waltraud M. Kriven, Formation of Ceramics from Metakaolin-Based Geopolymers: Part I—Cs-Based Geopolymer. J. Am. Ceram. Soc 2009; 92: 1-8.

DOI: 10.1111/j.1551-2916.2008.02790.x

Google Scholar

[6] Jonathan L. Bell, Patrick E. Driemeyer and Waltraud M. Kriven, Formation of Ceramics from Metakaolin-Based Geopolymers. Part II: K-Based Geopolymer. J. Am. Ceram. Soc 2009; 92: 607-615.

DOI: 10.1111/j.1551-2916.2008.02922.x

Google Scholar

[7] Kostas Komnitsas and Dimitra Zaharaki, Geopolymerisation: A Review and prospects for the minerals industry. Minerals Engineering 2007; 20: 1261-1277.

DOI: 10.1016/j.mineng.2007.07.011

Google Scholar

[8] H. K. J. Liyana, A. M. Mustafa Al Bakri, M. Binhussain, C. M. Ruzaidi and A. M. Izzat, Reviews on Fly Ash based Geopolymer Materials for Protective Coating Field Implementations. Australian Journal of Basic and Applied Sciences 2013; 7: 182-186.

Google Scholar

[9] J. G. S. Daniel L.Y. Kong, Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cement and Concrete Research 2010; 40: 334-339.

DOI: 10.1016/j.cemconres.2009.10.017

Google Scholar

[10] G. L. L. -N. Ayi D. Hounsi, Gnandé Djétéli, Philippe Blanchart, Kaolin-based geopolymers: Effect of mechanical activation and curing process. Construction and Building Materials 2013; 42: 106-113.

DOI: 10.1016/j.conbuildmat.2012.12.069

Google Scholar

[11] H. K. Y.M. Liew, A.M. Mustafa Al Bakri, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, C.Y. Heah, Processing and characterization of calcined kaolin cement powder. Construction and Building Materials 2012; 30: 794-802.

DOI: 10.1016/j.conbuildmat.2011.12.079

Google Scholar

[12] G. -Y. K. Peng Chen, Jun Ni, Investigations in the compaction and sintering of large ceramic parts. Journal of Materials Processing Technology 2007; 190: 243-250.

DOI: 10.1016/j.jmatprotec.2007.02.039

Google Scholar

[13] N. I. Takayasu Ikegami, Isao Sakaguchi, Evaluation of sintering stresses of an Al2O3 powder with a self-loading apparatus. Ceramics International 2009; 35: 3185-3194.

DOI: 10.1016/j.ceramint.2009.05.004

Google Scholar

[14] A. M. Eugene Olevsky, Instability of sintering of porous bodies. International Journal of Plasticity 2000; 16: 1-37.

Google Scholar

[15] D. J. Peigang He, Shengjin Wang, Microstructure and integrity of leucite ceramic derived from potassium-based geopolymer precursor. Journal of the European Ceramic Society 2013; 33: 689-698.

DOI: 10.1016/j.jeurceramsoc.2012.10.019

Google Scholar

[16] B. J. Xie N, Kriven WM, Fabrication of Structural Leucite Glass-Ceramics from Potassium-based Geopolymer Precursor. J Am Ceram Soc 2010; 93: 2644-2649.

DOI: 10.1111/j.1551-2916.2010.03794.x

Google Scholar

[17] E. Y. Gutmanas, Materials with Fine Microstructures by Advanced Powedr Metallurgy. Progress in Materials Science 1990; 34: 261-366.

DOI: 10.1016/0079-6425(90)90003-r

Google Scholar

[18] A. K. Rajiv Asthana, Narendra B. Dahotre, Powder Metallurgy and Ceramic Forming. Materials Processing and Manufacturing Science 2006; 167-245.

DOI: 10.1016/b978-075067716-5/50005-4

Google Scholar

[19] P. C. Angelo, Subramanian, a, R., Powder Metallurgy: Science, Technology and Applications: PHI Learning, (2008).

Google Scholar

[20] D. J. Peigang He, Tiesong Lin, Meirong Wang, Yu Zhou, Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceramics International 2010; 36: 1447-1453.

DOI: 10.1016/j.ceramint.2010.02.012

Google Scholar

[21] H. K. C.Y. Heah, A.M. Mustafa Al Bakri, M. Binhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, Y.M. Liew, Effect of Curing Profile on Kaolin-based Geopolymers. Physic Procedia 2011; 22: 305-311.

DOI: 10.1016/j.phpro.2011.11.048

Google Scholar

[22] H. K. C.Y. Heah, A.M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, and Y.M. Liew, Kaolin-based geopolymers with various NaOH concentrations. International Journal of Minerals, Metallurgy andMaterials 2013; 20: p.313.

DOI: 10.1007/s12613-013-0729-0

Google Scholar

[23] J. S. J. v. D. J.G.S. van Jaarsveld, G.C. Lukey, The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chemical Engineering Journal 2002; 89: 63-73.

DOI: 10.1016/s1385-8947(02)00025-6

Google Scholar

[24] L. M. G. C. Kuenzel, L. Vandeperre, A.R. Boccaccini, C.R. Cheeseman, Production of nepheline/quartz ceramics from geopolymer mortars. Journal of the European Ceramic Society 2013; 33: 251-258.

DOI: 10.1016/j.jeurceramsoc.2012.08.022

Google Scholar

[25] H. K. Y.M. Liew, A.M. Mustafa Al Bakri, M. Luqman, I. Khairul Nizar & C.Y. Heah, Investigating The Possibility Of Utilization Of Kaolin And The Potential Of Metakaolin To Produce Green Cement For Construction Purposes – A Review. Australian Journal of Basic and Applied Sciences 2011; 5: 441-449.

DOI: 10.1016/j.conbuildmat.2011.12.079

Google Scholar

[26] H. K. Bowen, Basic Research Needs on High Temperature Ceramics for Energy Applications. Materials Science and Engineering 1980; 44: 1-66.

Google Scholar

[27] H. K. C.Y. Heah, A.M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, Y.M. Liew, Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Construction and Building Materials 2012; 35: 912-922.

DOI: 10.1016/j.conbuildmat.2012.04.102

Google Scholar