Synthesis and Hydrogen Storage Properties of Magnesium Nanoparticles with Core/Shell Structure

Article Preview

Abstract:

Magnesium nanoparticles were synthesized by using organo magnesium precursor. By changing synthesis parameters such as synthesis time and temperature, various morphologies of the magnesium nanoparticles were obtained. Sample synthesized at 250°C for 30 min exhibited agglomerated nanosheets of magnesium whereas the sample obtained at 2 hour had individual particles consisted of core/shell structure. The corresponding hydrogen storage properties of these samples were also influenced by the morphology. Hydrogen desorption data revealed that samples prepared at 2 hour could release hydrogen at lower temperature (343°C) than those samples prepared at 30 min and 1 hour.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

120-126

Citation:

Online since:

December 2012

Export:

Price:

[1] M. Ball, M. Wietschel, Int J Hydrogen Energy, 34 (2009) 615-627.

Google Scholar

[2] W. Carl-Jochen, Int J Hydrogen Energy, 34 (2009) S1-S52.

Google Scholar

[3] B. Mustafa, Int J Hydrogen Energy, 33 (2008) 4013-4029.

Google Scholar

[4] N. Ömer Faruk, International Journal of Hydrogen Energy, 36 (2011) 11216-11228.

Google Scholar

[5] B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Int J Hydrogen Energy, 32 (2007) 1121-1140.

Google Scholar

[6] L. Schlapbach, A. Zuttel, Nature, 414 (2001) 353-358.

Google Scholar

[7] K. -F. Aguey-Zinsou, J. -R. Ares-Fernandez, Energy Environ. Sci., 3 (2010) 526-543.

Google Scholar

[8] G. Liang, J. Huot, S. Boily, N.A. Van, R. Schulz, J. Alloys Compd., 292 (1999) 247-252.

Google Scholar

[9] N. Bazzanella, R. Checchetto, A. Miotello, C. Sada, P. Mazzoldi, P. Mengucci, Appl. Phys. Lett., 89 (2006) 014101/014101-014101/014103.

DOI: 10.1063/1.2218328

Google Scholar

[10] A. Zaluska, L. Zaluski, J.O. Strom-Olsen, J. Alloys Compd., 288 (1999) 217-225.

Google Scholar

[11] V. Berube, G. Radtke, M. Dresselhaus, G. Chen, Int. J. Energy Res., 31 (2007) 637-663.

Google Scholar

[12] R.W.P. Wagemans, L.J.H. van, J.P.E. de, D.A.J. van, J.K.P. de, J. Am. Chem. Soc., 127 (2005) 16675-16680.

Google Scholar

[13] J. Huot, G. Liang, R. Schulz, Appl. Phys. A: Mater. Sci. Process., 72 (2001) 187-195.

Google Scholar

[14] M. Paskevicius, D.A. Sheppard, C.E. Buckley, J. Am. Chem. Soc., 132 (2010) 5077-5083.

Google Scholar

[15] T.K. Nielsen, K. Manickam, M. Hirscher, F. Besenbacher, T.R. Jensen, ACS Nano, 3 (2009) 3521-3528.

DOI: 10.1021/nn901072w

Google Scholar

[16] P.E. de Jongh, R.W.P. Wagemans, T.M. Eggenhuisen, B.S. Dauvillier, P.B. Radstake, J.D. Meeldijk, J.W. Geus, J.K.P. de, Chem. Mater., 19 (2007) 6052-6057.

DOI: 10.1021/cm702205v

Google Scholar

[17] C. -Y. Zhu, S. Hosokai, T. Akiyama, Cryst. Growth Des., 11 (2011) 4166-4174.

Google Scholar

[18] T. Liu, T. Zhang, C. Qin, M. Zhu, X. Li, J. Power Sources, 196 (2011) 9599-9604.

Google Scholar

[19] S.B. Kalidindi, B.R. Jagirdar, Inorg Chem, 48 (2009) 4524-4529.

Google Scholar

[20] A. Tanksale, J.N. Beltramini, J.A. Dumesic, G.Q. Lu, J. Catal., 258 (2008) 366-377.

Google Scholar

[21] B.J. Kooi, G. Palasantzas, H.J.T.M. De, Appl. Phys. Lett., 89 (2006) 161914/161911-161914/161913.

Google Scholar

[22] M. Konarova, A. Tanksale, J.N. Beltramini, G.Q. Lu, Int. J. Hydrogen Energy, 37 (2012) 8370-8378.

DOI: 10.1016/j.ijhydene.2012.02.073

Google Scholar