Modelling the Static Recrystallisation Texture of FCC Metals Using a Phase Field Method

Article Preview

Abstract:

A three dimensional phase field model has been developed to simulate the texture formed during the static recrystallisation of FCC metals with medium or high stacking fault energy, such as aluminium, copper and nickel. Before recrystallisation the deformation texture as well as the stored energy was simulated using a three dimensional crystal plasticity finite element model. This output calculated on the distorted finite element mesh was first mapped onto the regular grid of the phase field model using a linear interpolation method and then used as initial condition for the subsequent recrystallisation texture modelling. This model has successfully predicted the typical recrystallisation texture components: cube {001}<100>, R {124}<211> in the aluminium alloy. In addition, the softening fraction and three dimensional microstructure produced during static recrystallisation have also been simulated by this model.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

739-744

Citation:

Online since:

April 2012

Export:

Price:

[1] W.G. Burgers and P.C. Louwense: Z. Phys. Vol. 61 (1931), p.605.

Google Scholar

[2] P.A. Beck: Adv. Phys. Vol. 3 (1954), p.245.

Google Scholar

[3] R. Sebald and G. Gottstein: Acta Mater. Vol. 50 (2002), p.1587.

Google Scholar

[4] A. Brahme, J. Fridy, H. Weiland and A.D. Rollett: Modelling Simul. Mater. Sci. Eng. Vol. 17 (2009), p.1.

DOI: 10.1088/0965-0393/17/1/015005

Google Scholar

[5] D.N. Lee: Scripta Metall. Mater. Vol. 32 (1995), p.1689.

Google Scholar

[6] B. Radhakrishnan, G.B. Sarma and T. Zacharia: Acta Mater. Vol. 46 (1998), p.4415.

Google Scholar

[7] C. Caleyo, T. Baudin and R. Penelle: Scripta Mater. Vol. 46 (2002), p.829.

Google Scholar

[8] R.E. Bolmaro, A. Roatta, A.L. Fourty and J.W. Signorelli: Scripta Mater. Vol. 53 (2005), p.147.

Google Scholar

[9] N. Rajmohan and J.A. Szpunar: Acta Mater. Vol. 48 (2000), p.3327.

Google Scholar

[10] O. Engler: Modelling Simull. Mater. Sci. Eng. Vol. 11 (2003), p.863.

Google Scholar

[11] O. Engler, L. Lochte and J. Hirsch: Acta Mater. Vol. 55 (2007), p.5449.

Google Scholar

[12] M. Crumbach, M. Goerdeler, G. Gottstein, L Neumann, H. Aretz and R. Kopp: Modelling Simul. Mater. Sci. Eng. Vol. 12 (2004), p. S1.

DOI: 10.1088/0965-0393/12/1/s01

Google Scholar

[13] M. Crumbach, M. Goerdeler and G. Gottstein: Acta Mater. Vol. 54 (2006), p.3275.

Google Scholar

[14] P. Mukhopadhyay, M. Loeck and G. Gottstein: Acta Mater. Vol. 55 (2007), p.551.

Google Scholar

[15] T. Takaki, A. Yamanaka, Y. Higa and Y. Tomita: J. Computer-aided Mater. Des. Vol. 14 (2007), p.75.

Google Scholar

[16] S.G. Kim, W.T. Kim and T. Suzuki: Phys. Rev. E Vol. 60 (1999), p.7186.

Google Scholar

[17] S.M. Allen and J.W. Cahn: J. Phys. Vol. 38 (1977), p. C7.

Google Scholar

[18] Y. Huang and F.J. Humphreys: Acta Mater. Vol. 48 (2000), p. (2017).

Google Scholar

[19] D. Peirce, R.J. Asaro and A. Needleman: Acta Metall. Vol. 30 (1982), p.1087.

Google Scholar

[20] W. Mao: J. Mater. Eng. Perform. Vol. 8 (1999), p.556.

Google Scholar

[21] F.J. Humphreys and M. Hatherly: Recrystallization and related annealing phenomena (Elsevier Science Ltd, Unite Kingdom 2002).

Google Scholar