Scale Deformation and Failure in Hot Rolling: Understanding and Simulation

Article Preview

Abstract:

This work reviews recent advances in research on oxide scale behaviour in hot rolling processes. Presenting novel approaches, the paper emphasizes the crucial role of reproducible experiments to elucidate the scale properties coupled with numerical analysis to develop quantitative models with predictive accuracy. Oxide scale failure is predicted taking into consideration the main physical phenomena. The most critical for scale deformation and failure parameters are measured during testing and depend on the morphology, scale growth temperature. They are also very sensitive to the chemical content of the underlying metal. The work integrates the combined finite/discrete element analysis with a range of experiments each provide partial insight into oxide fracture, friction, heat transfer, descaling and pick-up, mechanical intermixing taking place near the stock surface among others.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

144-149

Citation:

Online since:

September 2011

Export:

Price:

[1] M. Krzyzanowski, J.H. Beynon and D.C.J. Farrugia: Oxide Scale Behavior in High Temperature Metal Processing, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, (2010).

DOI: 10.1002/9783527630318

Google Scholar

[2] Y.H. Li, M. Krzyzanowski, J.H. Beynon and C.M. Sellars: Acta Metallurgica Sinica, Vol. 13 (2000), p.359.

Google Scholar

[3] G.O. Rincon: Ph.D. thesis, University of Sheffield, Sheffield, UK, (2006).

Google Scholar

[4] M. Krzyzanowski and J.H. Beynon: Steel Research, Vol. 70 (1999), p.22.

Google Scholar

[5] M. Krzyzanowski and J.H. Beynon: J. Mater. Proc. Techn., Vol. 125-126 (2002), p.398.

Google Scholar

[6] L. Suárez, Y. Houbaert, X. Vanden Eynde and R. Colás: Corrosion Sci., Vol. 51 (2009), p.309.

Google Scholar

[7] C. Grenier, P. -O. Bouchard, P. Montmitonnet and M. Picard: Int. J. Mater. Form., Vol. 1 (2008), p.1227.

Google Scholar

[8] H.R. Le, M.P.F. Sutcliffe, P.Z. Wang and G.T. Burstein, Acta Materialia, Vol. 52 (2004), p.911.

Google Scholar

[9] H. Echsler, S. Ito and M. Schütze: Oxidation of Metals, Vol. 60 (3/4) (2003), p.241.

Google Scholar

[10] M. Trull: Ph.D. thesis, University of Sheffield, Sheffield, UK, (2003).

Google Scholar

[11] M. Krzyzanowski, W. Yang, C.M. Sellars and J.H. Beynon: Mater. Sci. Technol., Vol. 19(1) (2003), p.109.

Google Scholar

[12] M. Krzyzanowski, J.H. Beynon and C.M. Sellars: Metallurgical and Materials Transactions B, Vol. 31B (6) (2000), p.1483.

Google Scholar

[13] A. Bakker: Int. J. Pres. Ves. & Piping, Vol. 14 (1983), p.153.

Google Scholar

[14] A. Afseth, J.H. Nordlien, G.M. Scamans and K. Nisancioglu: Corros. Sci., Vol. 44 (2002), p.2491.

Google Scholar

[15] M. Krzyzanowski, M.F. Frolish, W.M. Rainforth and J.H. Beynon: Computer Methods in Materials Science, Vol. 7 (2007), p.1.

Google Scholar

[16] E. Oñate and J. Rojek: Comput. Methods Appl. Mech. Engrg., Vol. 193 (2004), p.3087.

Google Scholar

[17] M. Krzyzanowski and W.M. Rainforth in: Proc. 4th Int. Conference on Tribology in Manufacturing Processes ICTMP 2010, eds. E. Felder and P. Montmitonnet, 13 – 15 June, Nice, France, Presses des Mines, Paris, p.877.

Google Scholar