Nanomaterial Preparations by Microwave-Assisted Solution Combustion Method and Material Properties of SnO2 Powder - A Status Review

Article Preview

Abstract:

A nanocrystalline tin oxide (SnO2) powders have been prepared by a simple, low-temperature initiated, self-propagating and gas producing by microwave-assisted solution combustion process. The effects of temperature on crystalline phase formation and particle size of nanocrystalline SnO2 and its structure have been investigated. It is observed that heat-treated upto 800°C shows tetragonal phase SnO2. It was observed that the average crystallite size of the annealed SnO2 samples is in the range 9 - 43 nm through controlled heat treatment process. The crystal density of the as-prepared powder is 5.850g cm-3 where as the bulk density is 6.998 g cm−3. The microstructure and morphology were studied by scanning electron microscope (SEM) and HRTEM it is interesting to note that as-prepared SnO2 sample are almost spherical in shape and average agglomerate crystal size of 0.2 – 0.4 μm with increase in calcination temperature, the samples become better morphology than the as-prepared sample. The crystallographic parameters were refined by XRD pattern and Rietveld refinement using TOPAS-3 and Diamond software was used to construct the structural parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-120

Citation:

Online since:

January 2011

Export:

Price:

[1] R. Kubo, J. Phys. Soc. Jpn., 17 (1962) 975.

Google Scholar

[2] S. Iijima, Nature, 354 (1991) 56.

Google Scholar

[3] L.E.J. Brus, Phem. Chem. 98 (1994) 3575.

Google Scholar

[4] J. Rupp, R. Birringer, Phys. Rev. B 36 (1987) 7888.

Google Scholar

[5] E. Hellstern, H. Fecht, Z. Fu, W.L. Johnon, Appl. Phys. 65 (1989) 305.

Google Scholar

[6] J. Horvath, R. Birringer, H. Gleiter, Solid State Commun. 62 (1987) 319.

Google Scholar

[7] R. Birringer, H. Hahn, H.J. Hofler, J. Karch, H. Gleiter, Diffus. Defect. Date: Defect. Diffus. Forum 59 (1998) 17.

Google Scholar

[8] H. Gleiter, Prog. Mater. Sci. 32 (1989) 223.

Google Scholar

[9] Kumar, Challa. (ed) 2006. Nanomaterials: toxicity, health, and environmental issues. 1st ed. Nanotechnologies for the Life Sciences Vol 5. Weinheim: Wiley-VHC.

Google Scholar

[10] Z Li,. H Hahn,. R. W. Siegel,. Mater. Lett. 6 (1988) 342.

Google Scholar

[11] A. W Adamsom, A. P Gast, In Physical Chemistry of Surfaces 6th ed., Wiley Interscience, New York, 257 (1997).

Google Scholar

[12] R.W. Siegel. Encyclopedia of Applied Physics, VCH, 11 (1994) 173.

Google Scholar

[13] E. L. Venturini, J. P. Wilcoxon, and P. P. Newcomer. Mater. Res. Soc., Symp. Proc. volume 351 (1994) 311.

Google Scholar

[14] J. P. Wilcoxon, R. L. Williamson, and R. Baughman. J. Chem. Phys., 98 (1993) 9933.

Google Scholar

[15] Franklin, N. M., N. J. Rogers, S.C. Apte, G.E. Batley, G.E. Gadd, and P.S. Casey. 2007. Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a Freshwater Microalga (Pseudokirchneriella subcapitata): The Importance of Particle Solubility. Environmental Science and Technology 41: 8484-8490.

DOI: 10.1021/es071445r

Google Scholar

[16] J Chen,., J. Zhu, H. -H. Cho, K. Cui, F. Li., X. Zhou, J.T. Rogers, S.T.C. Wong, and X. Huang. 2007. Differential Cytotoxicity of Metal Oxide Nanoparticles. In NSTI Nanotech 2007; May 20-24, 2007; Santa Clara, California.

Google Scholar

[17] Jeng, H. A. and J. Swanson 2006. Toxicity of Metal Oxide Nanoparticles in Mammalian Cells. Journal of Environmental Science & Health, Part A: Toxic/Hazardous Substances & Environmental Engineering 41(12): 2699-2711.

DOI: 10.1080/10934520600966177

Google Scholar

[18] Houlahan, J. E., C. S. Findlay, B. R. Schmidt, A. H. Meyer, and S. L. Kuzmin. 2000. Nature 404(6779): 752.

Google Scholar

[19] S.C. Tjong and H. Chen, Materials Science and Engineering: Reports, 45 (2004) 2.

Google Scholar

[20] C.J. Murphy, Material Science, 298 (5601) (2002) 2139.

Google Scholar

[21] S. Pratsims, Particle technology laboratory, www. ptl. ethz. ch, (2005).

Google Scholar

[22] H. Zhang, D. Yang, X. Ma, Y. Ji, S.Z. Li, and D Que, Materials Chemistry and Physics, 93 (2005) 65.

Google Scholar

[23] A. Martucci, J. Fick, Serge-Emile LeBlanc, M. LoCascio, A Hache, J. of Non-Crystalline Solids, 345&346 (2004) 639.

DOI: 10.1016/j.jnoncrysol.2004.08.114

Google Scholar

[24] Masui, T.; Fujiwara, K.; Machida, K.; Adachi, G.; Sakata, T.; Mori, H.: Chem. Mater. 9 (1997) 2197.

Google Scholar

[25] Dagani, R.: Chem. & Eng. News 70 (1992) 18.

Google Scholar

[26] Argazzi, R.; Bignozzi, C. A.: J. Am. Chem. Soc. 117 (1995) 11815.

Google Scholar

[27] Chin, R. P.; Shen, Y. R.; Petrova-Koch, V.: Science 270 (1995) 776.

Google Scholar

[28] Bhargava, R. N.: J. Lumin. 70 (1996) 85.

Google Scholar

[29] Wittenauer, J.: In Plastic Deformation of Ceramics, R. C. Bradt, C. A. Brookes, and J. L. Routbort (eds. ), Plenum, New York, 321 (1995).

Google Scholar

[30] Skandan, G.; Kear, B. H.: Mater. Sci. Forum 243-245 (1997) 217.

Google Scholar

[31] Jack, K. H.: High Technology Ceramics, Past, Present, and Future; Ceramics and Civilization 3, W. D. Kingery (ed. ), 259 (1986).

Google Scholar

[32] Cahn, R. W.: Nature 332 (1988) 761.

Google Scholar

[33] L. Sun, C. Qian, C. Liao, X. Wang, C. Yan, Solid State Communications, 119 (2001) 393.

Google Scholar

[34] Y.J. Yang, L.Y. He, Q.F. Zhang, Electrochemistry Communication, 7 (2005) 361.

Google Scholar

[35] R.S. Patil, C.D. Lokhande, R.S. Mane, T.P. Gujar, S-H. Han, J. Non-CrystallineSolids, 353 (2007) 1645.

Google Scholar

[36] P. Aragon-Santamaria, M.J. Santos-Delgado, A. Maceira-Vidan, L.M. Polo-Diez, J. Mater. Chem., 1 (3) (1991) 409.

Google Scholar

[37] A.C. Pierre, Introduction to sol-gel processing, Kluwer Academic Publishers, Boston, (1998).

Google Scholar

[38] Ravindranathan, P.; Komarneni, S.; Roy, R.: J. Mater. Sci. Lett. 12 (1993) 369.

Google Scholar

[39] Zhang, Y.; Stangle, G. C.: J. Mater. Res. 9 (1994) (1997).

Google Scholar

[40] Kingsley, J. J.; Pederson, L. R.: Mater. Lett. 18 (1993) 89.

Google Scholar

[41] Kingsley, J. J.; Pederson, L. R.: Mater. Res. Soc. Symp. Proc. 296 (1993) 361.

Google Scholar

[42] Patil KC, Hegde MS, Tanu Rattan, Aruna ST. Chemistry of nanocrystalline oxide materials: combustion synthesis, properties and applications. Singapore: World Scientific; (2008).

DOI: 10.1142/6754

Google Scholar

[43] Mukasyan AS, Martirosyan K, editors. Combustion of heterogeneous systems: fundamentals and applications for material synthesis. Kerala, India: Transworld Research Network; 2007, 234.

Google Scholar

[44] Segadaes AM. Eur Ceram News Lett 9 (2006)1.

Google Scholar

[45] Varma A, Diakov V, Shafirovich E. Heterogeneous combustion: recent developments and new opportunities for chemical engineers. AIChE J 51 (2005) 2876.

DOI: 10.1002/aic.10697

Google Scholar

[46] Patil KC, Aruna ST, Mimani T. Current Opinion in Solid State Mater Sci 6 (2002) 507.

Google Scholar

[47] Singanahally T. Aruna, Alexander S. Mukasyan, Current Opinion in Solid State and Materials Science 12 (2008) 44.

Google Scholar

[48] A. Varma, A.S. Rogachev, A. S. Mukasyan, Adv. in Ch. Eng., 24, 79-226 (1998).

Google Scholar

[49] Stobierski L, Wegrzyn Z, Lis J, Buck M. Int J Self-Prop High-Temp Synth 10 (2001) 217.

Google Scholar

[50] Bernard F, Gaffet E. Int J Self-Prop High-Temp Synth 10 (2001) 109.

Google Scholar

[51] Borovinskaya IP, Ignat'eva TI, Vershinnikov VI, Khurtina GG, Sachkova NV. Inorg Mater 39 (2003) 588.

Google Scholar

[52] Nersisyan HH, Lee JH, Won CW. Int J Self-Prop High-Temp Synth 12 (2003) 149.

Google Scholar

[53] Nersisyan HH, Lee JH, Won CW. Mater Chem Phys 89 (2005) 283.

Google Scholar

[54] Jayalakshmi M, Palaniappan M, Balasubramanian K. Int J Electrochem Sci 3 (2008) 96.

Google Scholar

[55] A. Varma, Form From Fire, Scientific American, 45 (2000) 58.

Google Scholar

[56] Z.A. Munir, U. Anselmi-Tamburini, Mater. Sci. Reports, 3 (1998) 277.

Google Scholar

[57] Hill, A and ILSI Europe Microwave Oven Task Force. Microwave Ovens. Brussels: ILSI Europe; (1998).

DOI: 10.1177/108201329900500512

Google Scholar

[58] National Research Council (U.S. ). Committee on Microwave Processing of Materials: An Emerging Industrial Technology. 1994. Microwave Processing of Materials. National Academy Press. Washington, D. C.

Google Scholar

[59] Sutton W. H., Microwave Processing of Ceramic Materials, Ceramic Bulletin, 68 (2), (1989) 376-386.

Google Scholar

[60] Roy R., Agrawal D., Cheng J., Gedevanishvili S., Nature, 399, (1999) 668-670.

Google Scholar

[61] Cheraddi A., Desgardin G., Provost J., Raveau B., Electroceramics IV, II, (1994) 1219-1224.

Google Scholar

[62] Ohlsson, T. Domestic use of microwave ovens. In: Macrae R, Robinson, RK and Sadler, MJ, editors. Encyclopaedia of food science food technology and nutrition. Vol. 2. London: Academic Press; (1993) 1232-1237.

Google Scholar

[63] Sajjad Habibzadeh, Amin Kazemi-Beydokhti, Abbas Ali Khodadadi, Yadollah Mortazavi, Sasha Omanovic, Mojtaba Shariat-Niassar, Chemical Engineering Journal 156 (2010) 471–478.

DOI: 10.1016/j.cej.2009.11.007

Google Scholar

[64] Zhijie Li, Wenzhong Shen, Xue Zhang, Limei Fang, Xiaotao Zu, Colloids and Surfaces A: Physicochem. Eng. Aspects 327 (2008) 17–20.

Google Scholar

[65] J.J. Zhu, J.M. Zhu, X.H. Liao, J.L. Fang, M.G. Zhou, H.Y. Chen, Mater. Lett. 53 (2002) 12–19.

Google Scholar

[66] D.S. Wu, C.Y. Han, S.Y. Wang, N.L. Wu, Mater. Lett. 53 (2002) 155–159.

Google Scholar

[67] F.I. Pires, E. Joanni, R. Savu, M.A. Zaghete, E. Longo, J.A. Varela, Mater. Lett. 62 (2008) 239–242.

DOI: 10.1016/j.matlet.2007.05.006

Google Scholar

[68] Chen-Tao Lee, Fu-Shan Chen, Chung-Hsin Lu, Journal of Alloys and Compounds 490 (2010) 407–411.

Google Scholar

[69] E. Michel, D. Chaumont, and D. Stuerga, Journal of Colloid and Interface Science 257 (2003) 258–262.

Google Scholar

[70] Yong Wang, Jim Yang Lee, Journal of Power Sources 144 (2005) 220–225.

Google Scholar

[71] M.L. Moreira, S.A. Pianaro, A.V.C. Andrade, A.J. Zara, Materials Characterization 57 (2006) 193–198.

Google Scholar

[72] Jun-Jie Zhu , Jian-Min Zhu, Xue-Hong Liao, Jiang-Lin Fang, Miao-Gao Zhou, Hong-Yuan Chen, Materials Letters 53 2002 12–19.

Google Scholar

[73] T. Krishnakumar, Nicola Pinna, K. Prasanna Kumari, K. Perumal, R. Jayaprakash, Materials Letters 62 (2008) 3437–3440.

DOI: 10.1016/j.matlet.2008.02.062

Google Scholar

[74] T. Krishnakumar, R. Jayaprakash, M. Parthibavarman, A.R. Phani, V.N. Singh, B.R. Mehta, Materials Letters 63 (2009) 896–898.

DOI: 10.1016/j.matlet.2009.01.032

Google Scholar

[75] Srivastava Abhilasha, Lakshmikumar ST, Srivastava AK, Jain Rashmi Kiran. Sens Actuators B 2007; 126: 583–7.

Google Scholar

[76] Cirera A, Vila A, Cornet A, Morante JR. Mater Sci Eng C 2001; 15: 203–5.

Google Scholar

[77] Wu Dien-Shi, Han Chih-Yu, Wang Shi-Yu, Wu Nae-Lih, Rusakova IA. Mater Lett 2002; 53: 155–9.

Google Scholar

[78] A. Cirera, A. Vila, A. Cornet, J.R. Morante, Materials Science and Engineering C 15 2001 203– 205.

Google Scholar

[79] M.P. Borom and M. Lee, Advan. Ceram. Mater. 1 ( 1986) 335.

Google Scholar

[80] F. Selmi, S. Komarneni, V.K. Varadarn and V.V. Varadan, MATERIALS LETTERS Volume 10, number 6 December (I990).

Google Scholar

[81] H. Hallil, P. Ménini and H. Aubert, Procedia Chemistry 1 (2009) 935–938.

Google Scholar

[82] Xu, C.; Tamaki, J.; Miura, N.; Yamazoe, N., Sensors & Actuators B-Chemical, 1991, 3, 147- 155.

Google Scholar

[83] J. L. Shi, J. Mater. Res. 14, 4 (1999) 1378-88.

Google Scholar

[84] Y. Ozaki, S. Suzuki, M. Morimitsu, M. Matsunaga, Sens. Actuators B 62 (2000) 220–225.

Google Scholar

[85] Y. Ozaki, S. Suzuki, M. Morimitsu, M. Matsunaga, J. Electrochem. Soc. 147 (2000) 1589–1591.

Google Scholar

[86] M. Morimitsu, Y. Ozaki, S. Suzuki, M. Matsunaga, Sens. Actuators B 67 (2000) 184–188.

Google Scholar

[87] S. Gupta, R.K. Roy, M. Pal Chowdhury, A.K. Pal, Vacuum 75, 2004, p.111 – 119.

Google Scholar

[88] M.S. Wagh, G.H. Jain, D.R. Patil, L.A. Patil, Sens. Actuators B 122, 2007, p.357 – 364.

Google Scholar

[89] V. A. Chaudhary, S. R. Sainkar, I . S. Mulla, Journal of Materials Science Letters 19 (2000) 249– 252.

Google Scholar

[90] J. Puigcorbe´, A. Cirera, J. Cerda`, J. Folch, A. Cornet, J.R. Morante, Sensors and Actuators B 84 (2002) 60–65.

Google Scholar

[91] Pyeong-Seok Cho, Ki-Won Kim, Jong-Heun Lee, Sensors and Actuators B 123 (2007) 1034– 1039.

Google Scholar

[92] J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, T. Kunitake, Chem. Mater. 17 (2005) 3513–3518.

DOI: 10.1021/cm047819m

Google Scholar

[93] K. Suito, N. Kawai, Y. Masuda, Mater. Res. Bull. 10 (1975) 677.

Google Scholar

[94] L. Luxmann, R. Dobner, Metall (Berlin) 34 (1980) 821.

Google Scholar

[95] F. Lawson, Nature 215 (1967) 955.

Google Scholar

[96] G. Murken, M. Tro¨mel, Ueber das beider, Z. Anorg. Allg. Chem. 897 (1973) 117.

Google Scholar

[97] K. Hasselbach, G. Murken, M. Tro¨mel, Z. Anorg. Allg. Chem. 897 (1973) 127.

Google Scholar

[98] Y. Li-Zi, S. Zhi-Tong, W. Chan-Zheng, J. Solid State Chem. 113 (1994) 221.

Google Scholar

[99] Matthias Batzill, Ulrike Diebold, Zh. Prikl. Khim. (Leningrad) 32 (1959) 273.

Google Scholar

[100] J. Geurts, S. Rau, W. Richter, F.J. Schmitte, Thin Solid Films 121 (1984) 217.

Google Scholar

[101] T. Yamazaki, U. Mizutani, Y. Iwama, Jpn. J. Appl. Phys. 21 (1982) 440.

Google Scholar

[102] J. Pannetier, G. Denes, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 36 (1980) 2763.

DOI: 10.1107/s0567740880009934

Google Scholar

[103] G.W. Watson, J. Chem. Phys. 114 (2001) 758.

Google Scholar

[104] J. Terra, D. Guenzburger, Phys. Rev. B 44 (1991) 8584.

Google Scholar

[105] M. Meyer, G. Onida, M. Palummo, L. Reining, Phys. Rev. B 64 (2001) 045119.

Google Scholar

[106] J. Galy, G. Meunier, S. Andersson, A. A ˚ stro¨m, Ste´re´ochimie des, J. Solid State Chem. 13 (1975) 142.

Google Scholar

[107] R.J. Gillespie, Molecular Geometry, Van Nostrand Reinhold, London, (1972).

Google Scholar

[108] I. Lefebvre, M. Szymanski, J. Olivier-Fourcade, J.C. Jumas, Phys. Rev. B 58 (1998) 1896.

Google Scholar

[109] A.A. Bolzan, C. Fong, B.J. Kennedy, C.J. Howard, Acta Crystallogr. Sect. B—Struct. Sci. 53 (1997) 373.

DOI: 10.1107/s0108768197001468

Google Scholar

[110] Z. M. Jarzebski, J. Electrochem. Soc. 123 (1976) 199.

Google Scholar

[111] V. W. H. Baur. Acta Crystallographica, 9: (1956) 515.

Google Scholar

[112] G. McCarthy, J. Welton, Powder Diffraction 4 (1989) 156.

Google Scholar

[113] C. G. Fonstad, R. H. Rediker, J. Appl. Phys. 42 (1971) 2911.

Google Scholar

[114] M. Nagasawa, S. Shionya, J. Phys. Soc. Jpn. 30 (1971) 1213.

Google Scholar

[115] C.L. Lau, G.K. Wertheim, J. Vac. Sci. Technol. 15 (1978) 622.

Google Scholar

[116] J. M. Themlin, M. Chtaib, L. Henrard, P. Lambin, J. Darville, J. -M. Gilles, Phys. Rev. B 46 (1992) 2460.

Google Scholar

[117] Matthias Batzill, Ulrike Diebold, Progress in Surface Science 79 (2005) 47.

Google Scholar

[118] S. Munnix, M. Schmeits, Electronic structure of tin dioxide surfaces, Phys. Rev. B 27 (1983) 7624.

DOI: 10.1103/physrevb.27.7624

Google Scholar

[119] J.M. Themlin, R. Sporken, J. Darville, R. Caudano, J.M. Gilles, Phys. Rev. B 42 (1990) 11914.

Google Scholar

[120] J.J. Kingsley, K.C. Patil, Mater. Lett. 6 (1988) 427.

Google Scholar

[121] S.R. Jain, K.C. Adiga, V.R. Verneker, Pai, Combustion Flame 40 (1981) 71.

Google Scholar

[122] S. Velumani, Xavier Mathew, P. J. Sebastian, Sa. K. Narayandass, D. Mangalaraj, Solar Energy Materials & Solar cells 76 (2003) 347.

Google Scholar

[123] Preetam Sing, Ashvani Kumar, Ajay Kaushal, Davinder Kaur, Ashish Pandey and R N Goyal, Bull. Mater. Sci., 31(3) (2008) 573.

Google Scholar

[124] Landford, I. J.; Louer, D., Reports on Progress in Physics 59 (1996) 131.

Google Scholar

[125] Zachariasen, W. H., Journal of Chemical Physics 16 (1948) 254.

Google Scholar

[126] Mooney, Rose C. L., Acta Crystallographica 2 (1949) 189.

Google Scholar

[127] Zachariasen, W. H.; Ellinger, F. H., Acta Crystallographica 16 (1963) 369.

Google Scholar

[128] Debets, P. C., Acta Crystallographica B: 24 (1968) 400.

Google Scholar

[129] K. Anandan, S. Gnanam, J. Gajendiran, V. Rajendran, Journal of Non-Oxide Glasses 2(2) (2010) 83.

Google Scholar

[130] Yujie Fenga, Yu-Hong Cuia, Junfeng Liua, Bruce E. Logana, Journal of Hazardous Materials 178 (2010) 29.

Google Scholar

[131] Ü. Kersen, Appl. Phys. A 75 (2002) 559.

Google Scholar

[132] Novinrooz, Abdoljavad, Sarabadani, Parvin Iran. J. Chem. Chem. Eng. Research Note. 28(2) (2009)113.

Google Scholar

[133] L´aszl´o K˝or¨osi, Szilvia Papp, Vera Meynen, Pegie Cool, Etienne F. Vansant, Imre D´ek´any, Colloids and Surfaces A: Physicochem. Eng. Aspects 268 (2005) 147.

Google Scholar

[134] K. Nomura, C. Barrero, J. Sakuma, M. Takeda, Czechoslovak Journal of Physics, Vol. 56 (2006), Suppl. E A E75.

Google Scholar

[135] Jochan JOSEPH, VargheseMATHEW, Jacob MATHEW, K. E. ABRAHAM, Turk J Phys, 33 (2009) 37.

Google Scholar

[136] Y. Wang1, M, Aponte, N. Le´on, I. Ramos, R. Furlan, N. Pinto, J.J. Santiago-Avil´es, REVISTA MEXICANA DE F´ISICA S 52 (2) (2006) 42.

Google Scholar

[137] H. S. ZHUANG, H. L. XIA, T. ZHANG, D. C. XIAO, Materials Science-Poland, 26(3) (2008) 517.

Google Scholar

[138] X. Q. Pana and L. Fu, JOURNAL OF APPLIED PHYSICS 89 (11) (2001) 6048.

Google Scholar

[139] Chanipat Euvananont, Thamrong Chansawang, Yot Boontongkong, Chanchana Thanachayanont Journal of Microscopy Society of Thailand, 23(1) (2009) 79.

Google Scholar

[140] Feng Gu, Shu Fen Wang, Meng Kai L€u, Yong Xin Qi, Guang Jun Zhou, Dong Xu, Duo Rong Yuan, Inorganic Chemistry Communications 6 (2003) 882.

DOI: 10.1016/s1387-7003(02)00711-6

Google Scholar

[141] J.K.L. Lai, C.H. Shek, G.M. Lin, Scripta Materialia 49 (2003) 441.

Google Scholar

[142] L.C. Tien, D.P. Norton, J.D. Budai, Materials Research Bulletin 44 (2009) 6.

Google Scholar

[143] Cheetham, A. K.; Taylor, J. C., Journal of Solid State Chemistry 21 (1977) 253.

Google Scholar

[144] Rietveld, H. M., Journal of Applied Crystallography 2 (1969) 65.

Google Scholar

[145] Cox, D. E.; Hastings, J. B.; Thomlinson, W.; Prewitt, C. T., Nuclear Instruments and Methods in Physics Research 208 (1983) 573.

DOI: 10.1016/0167-5087(83)91185-7

Google Scholar

[146] Young, R. A.; Mackie, P. E.; Von Dreele, R. B., Journal of Applied Crystallography 10 (1977) 262.

Google Scholar

[147] N.L.V. Carrno, A.P. Maciel, E.R. Leite, P.N. Lisboa-Filho, E. Lango, A. Valentini, L.F.D. Probst, C.O. Paiva-Santos, W.H. Schreiner, Sensors and Actuators B 86 (2002) 185.

Google Scholar

[148] A.P. Maciel, P.N. Lisboa-Filho, E.R. Leite, C.O. Paiva-Santos, W.H. Schreiner, Y. Maniette, E. Longo, Journal of the European Ceramic Society 23 (2003) 707.

DOI: 10.1016/s0955-2219(02)00190-5

Google Scholar

[149] Humberto V. Fajardo, Luiz F. D. Probst, Antoninho Valentini, Neftalí L. V. Carreño, Adeilton P. Maciel, Edson R. Leite and Elson Longo, J. Braz. Chem. Soc., 16(3B) (2005) 607.

DOI: 10.1590/s0103-50532005000400018

Google Scholar

[150] M.L. Moreira, S.A. Pianaro, A.V.C. Andrade, A.J. Zara Materials Characterization 57 (2006) 193.

Google Scholar

[151] Evandro A. de Morais, Luis V.A. Scalvi, Alberto A. Cavalheiro, Américo Tabata, José Brás B. Oliveira, Journal of Non-Crystalline Solids 354 (2008) 4840.

DOI: 10.1016/j.jnoncrysol.2008.04.029

Google Scholar

[152] C. O. Paiva-Santos, H. Gouveia, W. C. Las, J. A. Varela, Materials Structure, 6(2) (1999) 111.

Google Scholar

[153] Sean R. Shieh, Atsushi Kubo, Thomas S. Duffy, Vitali B. Prakapenka and Guoyin Shen PHYSICAL REVIEW B 73 (2006) 014105.

Google Scholar

[154] C. B. Fitzgerald, M. Venkatesan, A. P. Douvalis, S. Huber, and J. M. D. Coey, T. Bakas, JOURNAL OF APPLIED PHYSICS, 95(11) (2004).

Google Scholar

[155] J. A. G. Carrió, T. J. Masson, A. H. Munhoz, M. M. de Jesus, L. Perazolli, U. Coleto, S. Gutierrez-Antonio, R. F. C. Marques, C. O. Paiva-Santos, Z. Kristallogr. Suppl. 26 (2007) 467.

DOI: 10.1524/zksu.2007.2007.suppl_26.467

Google Scholar

[156] X.M. Liu, S.L. Wu, Paul K. Chu, J. Zheng, S.L. Li, Materials Science and Engineering A 426 (2006) 274.

Google Scholar

[157] Mahesh Bhagwat, Pallavi Shah, Veda Ramaswamy, Materials Letters 57 (2003) 1604.

Google Scholar

[158] L.B. Fraigi, D.G. Lamas, N.E. Walsoe de Reca, Materials Letters 47 2001 262–266.

Google Scholar

[159] Chen-Tao Lee, Fu-Shan Chen, Chung-Hsin Lu, Journal of Alloys and Compounds 490 (2010) 407.

Google Scholar

[160] L. Fraigi, D.G. Lamas, and N.E. Walso¨e de Reca, NanoStructured Materials, 11(3) (1999) 311.

Google Scholar

[161] Jun-Jie Zhu, Jian-Min Zhu, Xue-Hong Liao, Jiang-Lin Fang, Miao-Gao Zhou, Hong-Yuan Chen, Materials Letters 53 (2002) 12.

Google Scholar

[162] Malika Krishna and Sridhar Komarneni, Ceramics International 35 (2009) 3375.

Google Scholar

[163] A. Cirera, A. Vila, A. Cornet, J.R. Morante, Materials Science and Engineering C 15 (2001) 203.

Google Scholar

[164] A. Dieguez, A. Romano-Rodrıguez, J.R. Morante, U. Weimar, M. Ž . Schweizer-Berberich, W. Gopel, Sens. Actuators, B 31 (1996) 1.

Google Scholar

[165] T. Krishnakumar, R. Jayaprakash, M. Parthibavarman, A.R. Phani, V.N. Singh, B.R. Mehta, Materials Letters 63 (2009) 896–898.

DOI: 10.1016/j.matlet.2009.01.032

Google Scholar

[166] T. Krishnakumar a, Nicola Pinna b, K. Prasanna Kumari a, K. Perumal a, R. Jayaprakash, Materials Letters 62 (2008) 3437.

DOI: 10.1016/j.matlet.2008.02.062

Google Scholar

[167] Yong Wang, Jim Yang Lee, Journal of Power Sources 144 (2005) 220.

Google Scholar

[168] Feng Gu, Shu Fen Wang, Chun Feng Song, Meng Kai Lu, Yong Xin Qi, Guang Jun Zhou, Dong Xu, Duo Rong Yuan, Chemical Physics Letters 372 (2003) 451.

DOI: 10.1016/s0009-2614(03)00440-8

Google Scholar

[169] J Q Hu, X L Ma, N G Shang, Z Y Xie, N B Wong, C S Lee and S T Lee, J. Phys. Chem. B 106 (2002) 3823.

Google Scholar

[170] D Calestani, L Lazzarini, G Salviati and M Zha, Cryst. Res. Technol. 40 (2005) 937.

Google Scholar

[171] J H He, T H Wu, C L Hsin, K M Li, L J Chen, Y L Chueh, L J Chou and Z L Wang, Small 2 (2006)116.

Google Scholar

[172] H W Kim, N H Kim, J H Myung and S H Shim, Phys. Status Solidi A 202 (2005) 1758.

Google Scholar

[173] S Brovelli, N Chiodini, F Meinardi, A Lauria and A Paleari, Appl. Phys. Lett. 89 (2006) 153126.

DOI: 10.1063/1.2362583

Google Scholar