(Nitrogen-Vacancy)-Complex Formation in SiC: Experiment and Theory

Article Preview

Abstract:

Nitrogen (N) donors in SiC are partially deactivated either by Si+-/N+-co-implantation or by irradiation with electrons of 200 keV energy and subsequent annealing at temperatures above 1450°C; simultaneously the compensation is decreased. The free electron concentration and the formation of energetically deep defects in the processed samples are determined by Hall effect and deep level transient spectroscopy. A detailed theoretical treatment based on the density functional theory is conducted; it takes into account the kinetic mechanisms for the formation of N interstitial clusters and (N-vacancy)-complexes. This analysis clearly indicates that the (NC)4-VSi complex, which is thermally stable up to high temperatures and which has no level in the band gap of 4HSiC, is responsible for the N donor deactivation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 556-557)

Pages:

307-312

Citation:

Online since:

September 2007

Export:

Price:

[1] G. Pensl and T. Dalibor, in: Impurities and Defects in Group IV Elements, IV-IV and III-VCompounds, Part B, Landolt-Börnstein, New Series, Vol. 41, Subvolume A2, Supplement to Vols. III/22b, pp.2-37, edited by M. Schulz, Springer, Berlin (2003).

DOI: 10.1007/10681604_135

Google Scholar

[2] B.G. Svensson, A. Hallén, J. Wong-Leung, M.S. Jansen, M.K. Linnarsson, H.K. Nielsen, A. Yu. Kuznetsov, G. Alfieri, U. Grossner, E.V. Monakov, C. Jagadish, and J. Grillenberger: Mater. Sci. Forum Vol. 527-529 (2006), p.781.

DOI: 10.4028/www.scientific.net/msf.527-529.781

Google Scholar

[3] H. Itoh, T. Troffer, C. Peppermüller, and G. Pensl: Appl. Phys. Lett. Vol. 73 (1998), p.1427.

Google Scholar

[4] D. Åberg, A. Hallén, P. Pellegrino, and B.G. Svensson: Appl. Phys. Lett. Vol. 78 (2001), p.2908.

Google Scholar

[5] J.P. Biersack, Fortran Monte Carlo Program TRIM Cascade.

Google Scholar

[6] T. Troffer, C. Peppermüller, G. Pensl, K. Rottner, and A. Schöner: J. Appl. Phys. Vol. 80 (1996), p.3739.

DOI: 10.1063/1.363325

Google Scholar

[7] M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler: Comp. Phys. Commun. Vol. 107 (1997), p.187.

Google Scholar

[8] M. Bockstedte, A. Mattausch, O. Pankratov: Phys. Rev. B Vol. 68 (2003), p.205201.

Google Scholar

[9] M. Bockstedte, A. Mattausch, O. Pankratov: Appl. Phys. Lett. Vol. 85 (2004), p.58.

Google Scholar

[10] T. Dalibor, G. Pensl, H. Matsunami, T. Kimoto, W. J. Choyke, A. Schöner, and N. Nordell: phys. stat. sol. (a) Vol. 162 (1997), p.199.

DOI: 10.1002/1521-396x(199707)162:1<199::aid-pssa199>3.0.co;2-0

Google Scholar

[11] G.A. Evans, J.W. Steeds, L. Ley, M. Hundhausen, N. Schulze, and G. Pensl: Phys. Rev. B Vol. 66 (2002), p.035204.

Google Scholar

[12] K. Danno, T. Kimoto, H. Matsunami: Appl. Phys. Lett. Vol. 86 (2005), p.122104.

Google Scholar

[13] C. Hemmingsson, N.T. Son, O. Kordina, J.P. Bergman, E. Jánzen, S. Savage, and N. Nordell: J. Appl. Phys. Vol. 81 (1997), p.6155.

Google Scholar

[14] Y. Negoro, T. Kimoto, H. Matsunami: Appl. Phys. Lett. Vol. 85 (2004), p.1716.

Google Scholar

[15] G. Alfieri, E.V. Monakhlov, B.G. Svensson, and M.K. Linnarsson: J. Appl. Phys. Vol. 98 (2005), p.043518.

Google Scholar

[16] M. Bockstedte, A. Mattausch, and O. Pankratov: Mater. Sci. Forum Vol. 527-529 (2006), p.621.

Google Scholar

[17] U. Gerstmann, E. Rauls, T. Frauenheim, and H. Overhof: Phys. Rev. B Vol. 67 (2003), p.205202.

Google Scholar

[18] M. Bockstedte, A. Mattausch, and O. Pankratov: Phys. Rev. B Vol. 69 (2004), p.235202.

Google Scholar

[19] Z. Zolnai, N. T. Son, C. Hallin, and E. Janzén, J. Appl. Phys. Vol. 96 (2004).

Google Scholar