Fraction Scaling and Dynamical Properties of Elastomer Materials

Article Preview

Abstract:

Scaling of the real and the imaginary part of dynamic moduli with frequency, for fully cured elastomer materials as gum and active carbon black filled butyl rubbers, is considered experimentally and theoretically. For gum rubber in different ranges of frequency complete agreement with G''-scaling predicted by the Rouse theory is obtained. Obtained slopes for all G' and G'' of filled rubber are much lower.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

467-472

Citation:

Online since:

September 2007

Export:

Price:

[1] M.B. Plavsic: Interaction of Fillers with Polymer Networks-Transition from Nano to Macro Scale, Ch. 6 in Finely Dispersed Particles: Micro and Nano-, and Atto- Engineering, Eds. A. Spasic and J. Hsu (CRC, Taylor and Francis, New York 2006), p.131.

DOI: 10.1201/9781420027662.ch6

Google Scholar

[2] M. Dugic, D. Rakovic and M.B. Plavsic: The Polymer Conformational Stability and Transitions: A Quantum Decoherence Theory Approach, Ch. 9 in Finely Dispersed Particles: Micro and Nano-, and Atto- Engineering, Eds. A. Spasic and J. Hsu (CRC, Taylor and Francis, New York 2006), p.217.

DOI: 10.1201/9781420027662.ch9

Google Scholar

[3] P.J. Flory: Principles of Polymer Chemistry (Cornell Univ., New York 1953).

Google Scholar

[4] M.B. Plavsic, I. Pajic-Lijakovic and P. Putanov: Chain Conformational Statistics and Mechanical Properties of Elastomer Blends, Ch. 19 in New Polymeric Materials, Eds. L. Korugic-Karasz, W. Mac Knight and E. Martucelly (ACS, Oxford Univ. Press, Oxford 2005), p.252.

DOI: 10.1021/bk-2005-0916.ch019

Google Scholar

[5] P.G. deGennes: Scaling Concept in Polymer Physics (Cornell Univ., New York 1979).

Google Scholar

[6] B.B. Mandelbrot: The Fractal Geometry of Nature (Freemen, California 1982).

Google Scholar

[7] D. Avnir, Ed.: The Fractal Approach to Heterogeneous Chemistry (Wiley, New York 1989).

Google Scholar

[8] D. Stauffer, A. Coniglio and M. Adam: Adv. Polym. Sci. Vol. 44 (1982), p.103.

Google Scholar

[9] S. Alexander and R. Orbach: J. Phys. (Paris) Lett. Vol. 43 (1982), p.625.

Google Scholar

[10] F. Chambron, H.H. Winter: Polym. Bull. Vol. 13 (1985), p.499.

Google Scholar

[11] R. Muller, E. Gerard, P. Dagand and P. Rampp: Macromolecules Vol. 24 (1991), p.1321.

Google Scholar

[12] D. Adolf, J.M. Martin and J.P. Wilcoxon: Macromolecules Vol. 23 (1990), p.527.

Google Scholar

[13] D. Adolf and J.M. Martin: Macromolecules Vol. 23 (1990), p.3700.

Google Scholar

[14] D. Adolf and J.M. Martin: Macromolecules Vol. 24 (1991), p.6721.

Google Scholar

[15] H. Tanaka, A. Sakanishi, M. Kaneko, J. Furuichi: J. Polym. Sci. Part C Vol. 15 (1966), p.317.

Google Scholar

[16] Sakanishi: J. Chem. Phys. Vol. 48 (1968), p.3850.

Google Scholar

[17] M.B. Plavsic: Polymer Materials Science and Engineering (Naucna Knjiga, Serbia 1996).

Google Scholar

[18] C.M. Blow, Ed.: Rubber Technology and Manufacture (Butterwords, UK 1982).

Google Scholar

[19] M. Ilavsky, H. Valentova, Z. Sedlakova, J. Nedbal and V. Velychko: Mater. Sci. Forum Vol. 518 (2006), p.367.

DOI: 10.4028/www.scientific.net/msf.518.367

Google Scholar

[20] W.L. Vandoolaeghe and E.M. Terentjev: J. Chem. Phys. Vol. 123 (2005), p.9606.

Google Scholar

[21] M.V. Volkenstein: Biophysics (Mir, Russia1983).

Google Scholar

[22] M.B. Plavsic et al.: to be published.

Google Scholar