Corrosion Behavior of Al-7wt% Si-1.5wt% Cu Severely Deformed by Equal-Channel Angular Pressing

Article Preview

Abstract:

In this study, an Al-7 wt% Si-1.5 wt% Cu alloy was subjected to severe plastic deformation (SPD) by an equal-channel angular pressing (ECAP) technique. The ECAP process was repetitively carried out up to 8 passes using a strain introduction method of route BC, at a temperature of 25 °C and a pressing rate of 0.33 mm s-1. Microstructures of the samples before and after ECAP were observed by a scanning electron microscopy (SEM). Electrochemical properties of the Al-Si-Cu alloy fabricated by ECAP have been investigated in a borate-boric acid buffer solution containing Cl¯ ions at pH 8.3 and 25 °C by potentiodynamic polarization test. Corrosion pits on the sample surface after anodic polarization were investigated by means of SEM. The anodic polarization showed that as-cast Al-Si-Cu alloy with plate-shaped Si particles has poor resistance against pitting corrosion comparing to quenched sample without ECAP. Pitting potentials of ECAPed Al-Si-Cu alloy samples were higher than that of the sample without ECAP. In the Al-Si-Cu alloy, the corrosion pits were found in the region of Si particles and the size of pits formed on the ECAPed samples became smaller than that without ECAP. It is considered that the improvement of the pitting resistance of ECAPed Al-Si-Cu alloy is due to homogenous distribution of spherical Si particles generated during ECAP process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

2892-2897

Citation:

Online since:

March 2007

Export:

Price:

[1] R. Z. Valiev, R. R. Mulyukov, V. V. Ovchinnikov and V. A. Shabashov: Scripta Metal. Mater vol. 25 (1991), p.841.

Google Scholar

[2] Y. V. Ivanisenko, A. V. Korznikov, I. M. Safarov and R. Z. Valiev: Nanostruct. Mater vol. 6 (1995), p.433.

Google Scholar

[3] J. Wang, Z. Horita, M. Furukawa, M. Nemoto, N. K. Tsenev, R. Z. Valiev, Y. Ma and T. G. Langdon: J. Mater. Res vol. 8 (1993), p.2810.

Google Scholar

[4] Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon: Acta Mater vol. 46 (1998), p.3317.

Google Scholar

[5] V. M. Segal, V. I. Reznikov, A. E. Drobyshevskiy and V. I. Kopylov: Metally, 1981, 1, 115, English Translation: Russ. Metall vol. 1 (1981), 99.

Google Scholar

[6] S. Ferrasse, V. M. Segal, K. T. Hartwig and R. E. Goforth: Metall. Mater. Trans. A vol. 28A (1997), p.1047.

Google Scholar

[7] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T. G. Langdon: Scripta. Mater vol. 35 (1996), p.143.

Google Scholar

[8] K. Nakashima, Z. Horita, M. Nemoto and T. G. Langdon: Acta. Mater vol. 46 (1998), p.1589.

Google Scholar

[9] V. V. Stolyarov, Y. T. Zhu, T. C. Lowe, R. K. Islamgaliev and R. Z. Valiev: Nanostruct. Mater vol. 11 (1999), p.947.

Google Scholar

[10] K. Neishi , Z. Horita and T. G. Langdon: Mater. Sci. Eng. A vol. 325 (2002), p.54.

Google Scholar

[11] V. Patlan, A. Vinogradov, K. Higashi and K. Kitagawa: Mater Sci Eng. A vol. 300 (2001), p.171.

Google Scholar

[12] D. H. Shin, B. C. Kim, K. -T. Park and W. Y. Choo: Acta. Mater vol. 48 (2000), p.3245.

Google Scholar

[13] Z. G. Zhang, Y. Watanabe and I. S. Kim: Materi. Sci. Tech vol. 21 (2005), p.708.

Google Scholar

[14] Z. G. Zhang, Y. Watanabe, I. S. Kim, X. F. Liu and X. F. Bian: Metall. Mater. Trans. A vol. 36A (2005), p.837.

Google Scholar

[15] M. K. Chung, Y. S. Choi, J. G. Kim, Y. M. Kim and J. C. Lee: Mater Sci Eng. A vol. A366 (2004), p.282.

Google Scholar

[16] K. Nakashima, Z. Horita, M. Nemoto and T.G. Langdon: Acta Mater vol. 46 (1998), p.1589.

Google Scholar

[17] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon: Mater. Sci. Eng. A vol. A257 (1998), p.328.

Google Scholar

[18] Y. Watanabe, N. Yamanaka and Y. Fukui: Metall. Mater. Trans. A vol. 30 (1999), p.3253.

Google Scholar