Recent Research and Development in Metallic Materials for Biomedical, Dental and Healthcare Products Applications

Article Preview

Abstract:

Non-toxic allergy free alloying elements are mostly selected for preparing metallic biomaterials. Currently, functionalities such as low modulus, shape memory, super elasticity, etc. are required for the metallic biomaterials, especially for β type titanium alloys. The harmonization of metallic, ceramic, and polymer biomaterials is needed for advanced biomaterials in the future. Titanium and its alloys are attracting considerable attention with regard to applications not only in the biomedical field, but also for dental and healthcare products. In dentistry, titanium and its alloys are applied to dental products such as crowns, inlays, bridges, etc., as well as dental implants. For fabricating dental products, the dental precision casting process is important. A new dental precision casting process using calcia is currently being developed. Noble alloys such as gold base or silver base alloys are widely applied for the precision casting of dental products. Allergy-free elements, particularly Pd-free low- noble dental alloys are required.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

193-200

Citation:

Online since:

March 2007

Authors:

Export:

Price:

[1] R. S. Brown and R. C. Gebeau: Sixth World Biomaterials Congress Transactions, (200), p.828.

Google Scholar

[2] D. Kuroda, T. Hanawa, A. Yamamoto, A. Yokoyama and N. Oda: Materia Japan Vol. 43 (2004), p.139.

Google Scholar

[3] A. Chiba, K. Kumagai, H. Takeda and N. Nomura: Mater. Sci. Forum Vol. 475-479 (2005), p.2317.

Google Scholar

[4] ASTM Designation: F1537-00: Annual Book of ASTM Standards, ASTM Int., (2005), p.660.

Google Scholar

[5] M. Niinomi: Proc. Mater. & Processes for Medical Devices Conf., (2003), p.417.

Google Scholar

[6] M. Niinomi, T. Hattori and S. Niwa: Biomaterials in Orthopedics, Eds. M. J. Yaszemski, D. J. Trantolo, K. U. Lewandrowski, V. Hasirci, D. E. Altobelli and D. L. Wise, Marcel Dekker, INC, (2004), p.41.

Google Scholar

[7] M. Niinomi: STAM, Vol. 4 (2003), p.445.

Google Scholar

[8] K. Ishihara and T. Yoneyama: Materia Japan, Vol. 43 (20049, p.118.

Google Scholar

[9] T. Hanawa, H. Sakamoto, Y. Iwasaki, Y. Tanaka and H. Imai: Proc. Meeting of Materials Reserach Federation of Science Council Japan, (2005), p.343.

Google Scholar

[10] M. Niinomi, H. Fukui, S. Takahashi, K. Fukunaga and J. Hasegawa: Int. J. Mater, and Product Technology, Vol. 14 (1999), p.244.

Google Scholar

[11] M. Niinomi, T. Mizumoto, H. Fukui, S. Takahashi, J. Hasegawa and T. Tsutsui: J. Japn. Soc. Denta. Mater. And Devices, Vol. 19 (2000), p.544.

Google Scholar

[12] T. Mizumoto, M. Niinomi, H. Fukui and J. Hasegawa: Structural Biomaterials for the 21st Centrury, eds. M. Niinomi, T. Okabe, E. M. Taleff, D. R. Lesuere and H. E. Lippard, TMS, (2001). P. 83.

Google Scholar

[13] Mitsuo Niinomi, Toshikazu Akahori, Tsutomu Takeuchi, and Shigeki Katsura: Materials Science Forum, Vols. 475-479 (2005), p.2303.

DOI: 10.4028/www.scientific.net/msf.475-479.2303

Google Scholar

[14] M. Niinomi, T. Akahori, T. Takeuchi, S. Katsura, H. Fukui and H. Toda: Mater. Sci. and Engng. C, Vol. 25 (2005), p.417.

Google Scholar

[15] Gunawarman, M. Niinomi, T. Akahori, T. Souma, M. Ikeda, H. Toda and K. Terashima: Mater. Trans., Vol. 46 (2005), p.1570.

DOI: 10.2320/matertrans.46.1570

Google Scholar