Influence of the Microwave Radiation on the Thermal Properties of Ni,Al Hydrotalcite-Like Compounds

Article Preview

Abstract:

The thermal stability of Ni,Al-CO3 hydrotalcite-like compounds synthesized by the coprecipitation method and aged upon microwave-hydrothermal treatment for different periods of time was studied. The samples prepared were characterized by Elemental Analysis, PXRD, Thermal analyses (DTA and TG) and Temperature Programmed Reduction (TPR). The results show that the use of microwave radiation as a source of heating during the ageing treatment leads to an increase in the crystallinity of the solids, which determines their thermal stability.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 514-516)

Pages:

1284-1288

Citation:

Online since:

May 2006

Export:

Price:

[1] V. Rives: Layered Double Hydroxides: Present and Future (Nova Science, New York, 2001).

Google Scholar

[2] P.S. Braterman, Z.P. Xu, F. Yarberry in: Handbook of Layered Materials, S.M. Auerbach, K.A. Carrado, P.K. Dutta (eds) (Marcel Dekker, Inc., New York, 2004).

Google Scholar

[3] D.L. Bish and G.W. Brindley: Am. Mineral Vol. 62 (1977), p.458.

Google Scholar

[4] B.M. Choudary, M.L. Kantam, A. Rahman, Ch.V. Reddyand and K.K. Rao: Angew. Chem. Int. Ed. Vol. 40 (2001) p.763.

Google Scholar

[5] J. Qiu and G. Villemure: J. Electroanal. Chem. Vol. 395 (1995) p.159.

Google Scholar

[6] D. Kishore and S. Kannan: Appl. Catal. A: General Vol. 270 (2004), p.227.

Google Scholar

[7] A. Sugimoto, S. Ishida and K. Hanawa: J. Electrochem. Soc. Vol. 146 (1999) p.1251.

Google Scholar

[8] S. Komarneni, Q. H. Li and R. Roy: J. Mater. Res. Vol. 11 (1996) p.1866.

Google Scholar

[9] S. Kannan and R. V. Jasra: J. Mater. Chem. Vol. 10 (2000) p.2311.

Google Scholar

[10] D. Tichit, A. Rolland, F. Prinetto, G. Fetter, M. J. Martínez-Ortiz, M. A. Valenzuela and P. Bosch, J. Mater. Chem. Vol. 12 (2002) p.3832.

Google Scholar

[11] V. Rives in Layered Double Hydroxides: Present and Future (Nova Science Publishers, Inc., New York, 2001) p.115.

Google Scholar

[12] Joint Committee on Powder Diffraction Standards, International Centre for Diffraction Data, Pennsylvania, (1977).

Google Scholar

[13] P. Malet and A. Caballero: J. Chem. Soc., Faraday Trans. Vol. I 84 (1988), p.2369.

Google Scholar

[14] F. Cavani, F. Trifirò and A. Vaccari: Catal. Today Vol. 11 (1991), p.173.

Google Scholar

[15] M. Bellotto, B. Rebours, O. Clause, J. Lynch, D. Bazin and E. Elkaim: J. Phys. Chem. Vol. 100 (1996), p.8527.

Google Scholar

[16] O. Clause, M. Gazzano, F. Trifirò, A. Vaccari and L. Zatorski: Appl. Catal. Vol. 73 (1991) p.217.

Google Scholar

[17] S. Möhmel, I. Kurzawski, D. Uecker, D. Müller and W. Gebner: Cryst. Res. Technol. Vol. 37 (2002), p.359.

Google Scholar

[18] S. Kannan, A. Narayanan and C. S. Swamy: J. Mat. Sci. Vol. 31 (1996), p.2353.

Google Scholar

[19] L. Pesic, S. Salipurovic, V. Markovic, D. Vucelic, W. Kagunya and W. Jones: J. Mater. Chem. Vol. 2 (1992) p.1069.

DOI: 10.1039/jm9920201069

Google Scholar

[20] O. Clause, B. Rebours, E. Merlen, F. Trifirò and A. Vaccari: J. Catal. Vol. 133 (1992) p.231.

Google Scholar

[21] K. Schulze, W. Makowski, R. Chyzy, R. Dziembaj and G. Geismar: App. Clay Sci. Vol. 18 (2001) p.59.

Google Scholar