Anisotropic Behaviour of Grain Boundaries

Article Preview

Abstract:

Grain boundaries are decisive for many properties of materials. Due to short-range stress field their influence is primarily based on their atomic structure. Special character of grain boundary properties related to their structure, follows from the nature of atomic arrangements in the boundary cores, from the interfacial dislocation content and from the boundary mobility. All those aspects of boundary behaviour are strongly influenced by the boundary chemistry including various segregation phenomena. Approaches to the boundary classification and the interpretation of recent experimental results are discussed in the context of the complex relationship between microstructure and material properties. Such findings are essential for Grain Boundary Engineering proposed to improve the performance of polycrystalline materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-70

Citation:

Online since:

April 2005

Export:

Price:

[1] Rice, J. and Thomson, R.: Phil. Mag. A 29 (1974), 73.

Google Scholar

[2] Thomson, R.: in Solid State Physics, ed. H. Ehrenreich and D. Turnbull. Vol. 39. (Academic Press, New York, 1986), p.1.

Google Scholar

[3] Vitek, V.: J. Phys. III (France) 1 (1991), 1085.

Google Scholar

[4] Kurishita, H., Kuba, S., Kubo, H. and Yoshinaga, H.: Trans. JIM 26 (1985), 332.

Google Scholar

[5] Kurishita, H., Oishi, A., Kubo, H. and Yoshinaga, H.: Trans. JIM 26 (1985), 341.

Google Scholar

[6] Kurishita, H. and Yoshinaga, H.: Mater. Forum 13 (1989), 161.

Google Scholar

[7] Tsurekawa, S., Tanaka, T. and Yoshinaga, H.: Mater. Sci. Eng. A 176 (1994), 341.

Google Scholar

[8] Herzig, C. and Divinski, S.V.: Mater. Trans. 44 (2003), 14.

Google Scholar

[9] Paidar, V.: Acta Metall. 35 (1987), (2035).

Google Scholar

[10] Paidar, V.: Phil. Mag. A 66 (1992), 41.

Google Scholar

[11] Sutton, A.P. and Balluffi, R.W.: Interfaces in Crystalline Materials (Clarendon, Oxford, 1995).

Google Scholar

[12] Watanabe, T.: Res. Mech. 11 (1984), 47.

Google Scholar

[13] Lehockey, E.M., Palumbo, G. and Lin, P.: Metall. Mater. Trans. A 29 (1998), 3069.

Google Scholar

[14] Lejček, P., Paidar, V., Adámek, J. and Hofmann, S.: Acta Mater. 45 (1997), 3915.

Google Scholar

[15] Wolf, D.: Phil. Mag. A 62 (1990), 447.

Google Scholar

[16] Lejček, P. and Hofmann, S.: Crit. Rev. Sol. State Mater. Sci. 20 (1995), 1.

Google Scholar

[17] Watanabe, T.: in Grain Boundary Engineering, ed. U. Erb and G. Palumbo. (Canadian Institute of Mining Metallurgy and Petrol, Montreal, 1993), p.57.

Google Scholar

[18] Watanabe, T., Suzuki, Y., Tanii, S. and Oikawa, H.: Phil. Mag. Lett. 62 (1990), 9.

Google Scholar

[19] Lejček, P. and Hofmann, S.: Interface Sci. 1 (1993), 163.

Google Scholar

[20] Fraczkiewicz, A., Gay, A.S. and Biscondi, M.: Mater. Sci. Eng. A 258 (1998), 108.

Google Scholar

[21] Lejček, P. and Adámek, J.: J. Phys. France IV 5 (1995), C3_107.

Google Scholar

[22] Furtkamp, M., Lejček, P. and Tsurekawa, S.: Interface Sci. 6 (1998), 59.

Google Scholar

[23] Furtkamp, M., Gottstein, G., Molodov, D.A., Semenov, V.N. and Shvindlerman, L.S.: Acta Mater. 46 (1998), 4103.

DOI: 10.1016/s1359-6454(98)00105-0

Google Scholar

[24] Rice, J.R.: J. Mech. Phys. Solids 40 (1992), 239.

Google Scholar

[25] Mishin, Y. and Farkas, D.: Phil. Mag. A 78 (1998), 29.

Google Scholar

[26] Mishin, Y., Sofronis, P. and Bassani, J.L.: Acta Mater. 50 (2002), 3609.

Google Scholar

[27] Aristov, V.Y., Kopetskii, C.V. and Shvindlerman, L.S.: in Nauchnie osnovy materialovedeniya, (Nauka, Moskva, 1981), p.84.

Google Scholar

[28] Gottstein, G. and Shvindlerman, L.S.: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications (CRC Press, Boca Raton, 1999).

DOI: 10.1201/9781420054361

Google Scholar