Gr/Cu Composites: Microstructure and Properties

Article Preview

Abstract:

Graphene(Gr) reinforced copper matrix composites(Gr/Cu) were prepared by powder metallurgy process, and the effects of graphene content on microstructure and properties of the composites were investigated. The microstructure, density, hardness and electrical conductivity of the composites were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), density measurement, hardness tester and conductivity meter. The results show that the interface bonding of the composite is good, there is no crack and no obvious interface reaction; there are a lot of dislocations and twins in Cu matrix. With the increase of graphene content, the density, heat capacity and thermal conductivity of the composites decrease, but the hardness increases first and then decreases.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

851-855

Citation:

Online since:

June 2021

Export:

Price:

* - Corresponding Author

[1] Y. Chen, X. Zhang, E. Liu, C. He, Y. Han, Q. Li, P. Nash, N. Zhao. Fabrication of three-dimensional graphene/Cu composite by in-situ CVD and its strengthening mechanism[J]. Journal of Alloys & Compounds, 2016, 688: 69-76.

DOI: 10.1016/j.jallcom.2016.07.160

Google Scholar

[2] R. Rezaei, C. Deng, H. T. Anbaran, M. Shariati. Deformation twinning-mediated pseudoelasticity in metal-graphene nanolayered membrane[J]. Philosophical Magazine Letters, 2016, 96(8): 322-329.

DOI: 10.1080/09500839.2016.1216195

Google Scholar

[3] G. Huang, H. Wang, P. Cheng, H. Wang, B. Sun, S. Sun, C. Zhang, M. Chen, G. Ding. Preparation and characterization of the graphene-Cu composite film by electrodeposition process[J]. Microelectronic Engineering, 2016, 157(C): 7-12.

DOI: 10.1016/j.mee.2016.02.006

Google Scholar

[4] H. Nie, L. Fu, J. Zhu, W. Yang, D. Li, L. Zhou. Excellent Tribological Properties of Lower Reduced Graphene Oxide Content Copper Composite by Using a One-Step Reduction Molecular-Level Mixing Process[J]. Materials, 2018, 11(4): 600.

DOI: 10.3390/ma11040600

Google Scholar

[5] R. Jiang , X. Zhou , Q. Fang, Z. Liu. Copper-graphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties[J]. Materials Science & Engineering A, 2016, 654: 124-130.

DOI: 10.1016/j.msea.2015.12.039

Google Scholar

[6] X. Wang , X. Wang , M. Liu, M. A. Crimp, Y. Wang, Z. Qu. Anisotropic thermal expansion coefficient of multilayer graphene reinforced copper matrix composites[J]. Journal of Alloys and Compounds, 2018, 755: 114-122.

DOI: 10.1016/j.jallcom.2018.04.325

Google Scholar

[7] H. Cao , D. Xiong , Z. Tan, G. Fan, Z. Li, Q. Guo, Y. Su, C. Guo, Di. Zhang. Thermal properties of in situ grown graphene reinforced copper matrix laminated composites[J]. Journal of Alloys and Compounds, 2018, 771: 228-237.

DOI: 10.1016/j.jallcom.2018.08.274

Google Scholar

[8] K. Chu, F. Wang, X. H. Wang, D. J. Huang. Anisotropic mechanical properties of graphene/copper composites with aligned graphene[J]. Materials Science & Engineering A, 2018, 713: 269-277.

DOI: 10.1016/j.msea.2017.12.080

Google Scholar

[9] X. Liu, D. Wei, L. Zhuang, C. Cai, Y. Zhao. Fabrication of high-strength graphene nanosheets/Cu composites by accumulative roll bonding[J]. Materials Science & Engineering A, 2015, 642: 1-6.

DOI: 10.1016/j.msea.2015.06.032

Google Scholar

[10] J. Cao, X. Zhang, X. Wu, S. Wang, C. Lu. Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications[J]. Carbohydrate Polymers, 2015, 140: 88-95.

DOI: 10.1016/j.carbpol.2015.12.042

Google Scholar

[11] Y. Chen, X. Zhang, E. Liu, C. He, C. Shi, J. Li, P. Nash, N. Zhao. Fabrication of in-situgrown graphene reinforced Cu matrix composites[J]. Scientific Reports, 2016, 6: 19363.

DOI: 10.1038/srep19363

Google Scholar

[12] U. Mogera, G. U. Kulkarni. Improving the quality of graphene/Cu by Joule heating and enabling polymer-free direct transfer onto arbitrary substrates[J]. Carbon, 2017, 124: 525-530.

DOI: 10.1016/j.carbon.2017.08.066

Google Scholar