Surface Effect in a Metastable β Ti-Nb-Sn Alloy

Article Preview

Abstract:

The phase compositions of surface and interior in Ti-32Nb-4Sn metastable b alloy were investigated. It was found that this alloy exhibits surface effect significantly different from the effects reported in Ti-10V-2Fe-3Al, Ti-22Nb-9Zr and the other titanium alloys. The surface of Ti-32Nb-4Sn specimen quenched from single b phase region was characterized by dominant b phase and a few of α″ and ω phase. While in the interior of the alloy, a large amount of α² martensite phase was observed in addition to b phase The orientation relationship between the α″ martensite and β phase is (110)β∥(002)α″, (020)β∥(022)α″ and [001]β∥[100]α″.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1035)

Pages:

562-567

Citation:

Online since:

June 2021

Export:

Price:

* - Corresponding Author

[1] Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications . Acta Biomaterialia, 2012, 8(11): 3888-903.

DOI: 10.1016/j.actbio.2012.06.037

Google Scholar

[2] Niinomi M. Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A, 2002, 33(3): 477-86.

Google Scholar

[3] Congqin Ning, Yu Zhou. Development and research status of biomedical titanium alloys. Materials Science and Technology, 2002, 01: 100-6.

Google Scholar

[4] Minghua Zhang, Zhentao Yu, Lian Zhou,Dianzhong Zhang. Evaluation on Biocompatibility of β-type Titanium Alloys. Rare Metal Materials and Engineering, 2007, 10: 1815-1819.

Google Scholar

[5] Niinomi M. Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A, 2002, 33: 477-486.

DOI: 10.1007/s11661-002-0109-2

Google Scholar

[6] Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T. Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science and Engineering A, 1998, 243: 244-249.

DOI: 10.1016/s0921-5093(97)00808-3

Google Scholar

[7] Niinomi M, Hattori T, Morikawa K, et al. Development of Low Rigidity Beta-Type Titanium Alloy for Biomedical Applications. Materials Transactions, 2002, 43(12): 2970-2977.

DOI: 10.2320/matertrans.43.2970

Google Scholar

[8] Yu Z T, Zhou L. Influence of Martensitic Transformation on Mechanical Compatibility of Biomedical Beta type Titanium Alloy. Materials Science and Engineering A, 2006, 438-440: 391394.

DOI: 10.1016/j.msea.2005.12.079

Google Scholar

[9] Ozaki T, Matsumoto H, Watanabe S, et al. Beta Ti Alloys with Low Young's Modulus. Materials Transactions, 2004, 45: 2776-2779.

DOI: 10.2320/matertrans.45.2776

Google Scholar

[10] Song Y, Yang R, Li D, et al. Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloy. Materials Science and Engineering A, 1999, 260A(1-2): 269-274.

DOI: 10.1016/s0921-5093(98)00886-7

Google Scholar

[11] Matsumoto H, Watanabe S , Hanada S. Beta TiNbSn alloys with low Young's Modulus and high strength. Materials Transactions, 2005, 46(5): 1070-1078.

DOI: 10.2320/matertrans.46.1070

Google Scholar

[12] Semboshi S, Shirai T, Konno T J, Hanada S. In-situ transmission electron microscopy observation on the phase transformation of Ti-Nb-Sn shape memory alloys. Metallurgical and Materials Transactions A, 2008, 39: 2820-2829.

DOI: 10.1007/s11661-008-9674-3

Google Scholar

[13] Guo S, Meng Q, Zhao X, et al. Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength. Scientific reports, 2015, 5 :14688.

DOI: 10.1038/srep14688

Google Scholar

[14] S. Guo, Q.K. Meng, L. Hu, G. Y. Liao, X.Q. Zhao, and H.B. Xu. Suppression of isothermal ω phase by dislocation tangles and grain boundaries in metastable β-type titanium alloys, Journal of Alloys and Compounds. 2013, 50, 35-38.

DOI: 10.1016/j.jallcom.2012.09.081

Google Scholar

[15] Duerig T, Middleton R, Terlinde G, et al. Stress assisted transformation in Ti-10V-2Fe-3Al [M]. Defense Technical Information Center, (1980).

DOI: 10.21236/ada074093

Google Scholar

[16] Ping D, Yamabe-Mitarai Y, Cui C, et al. Stress-induced α "martensitic (110) twinning in β-Ti alloys. Applied Physics Letters, 2008, 93(15): 151911--3.

DOI: 10.1063/1.3002295

Google Scholar

[17] Ping D H, Mitarai Y, Yin F X. Microstructure and shape memory behavior of a Ti–30Nb–3Pd alloy. Scripta Materialia, 2005, 52(12): 1287-91.

DOI: 10.1016/j.scriptamat.2005.02.029

Google Scholar

[18] Yongqi Zhu, Qingkun Meng, Shun Guo, Lichun Qi, Wenlong Xiao, Dehai Ping, Xinqing Zhao. Anomalous phase stability of surface and interior in a metastable Ti-Nb-Zr alloy. Materials Letters. 169 (2016) 210–213.

DOI: 10.1016/j.matlet.2016.01.145

Google Scholar

[19] Ohmori Y, Ogo T, Nakai K, et al. Effects of ω-phase precipitation on β→α, α" transformations in a metastable β titanium alloy. Materials Science and Engineering A, 2001, 312: 182-188.

DOI: 10.1016/s0921-5093(00)01891-8

Google Scholar

[20] Sun Q, Zhao H, Zhou R, et al. Recent advances in spatiotemporal evolution of thermomechanical fields during the solid–solid phase transition. Comptes Rendus Mecanique, 2012, 340(4): 349-58.

DOI: 10.1016/j.crme.2012.02.017

Google Scholar