The Isothermal Oxidation of MCrAlY Protective Coatings

Article Preview

Abstract:

The thermal barrier coatings (TBC) are commonly used for protection of jet engine parts. In presented article the influence of chemical composition of TBCs bond coats on isothermal oxidation resistance was analysed. The bond coat was plasma sprayed (APS) using different MCrAlY alloys produced by Oerlikon-Metco: Metco 4451, AMDRY 997, AMDRY 962, AMDRY 365-1, AMDRY 995C. The conducted research showed big difference in coating thickness despite the same spraying parameters. The difference in porosity was not observed. The isothermal oxidation test was conducted during 500h at 1100°C in static laboratory air. The obtained results showed, that degradation mechanism of MCrAlY bond coats regardless of chemical composition is similar. The formation of scale contained aluminium and chromium oxides was observed. The internal oxidation effect was also observed in produced coatings.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

407-412

Citation:

Online since:

January 2021

Export:

Price:

* - Corresponding Author

[1] L. Swadźba, A. Maciejny, B. Formanek, et al., Microstructure and resistance to cracking of modified Al-Si and Al-Cr diffusion coatings on ŻS6K nickel-based superalloys, Surf. and Coat. Techn., 54-55 (1992), 84-90, https://doi.org/10.1016/S0257-8972(09)90032-9.

DOI: 10.1016/s0257-8972(09)90032-9

Google Scholar

[2] M. Pytel. M. Góral, M. Maliniak, The influence of production method on oxidation resistance of the aluminide coatings obtained on IN 100 alloy, Arch. of Mat. Science and Eng., 53 (2012) 2, 102-108.

Google Scholar

[3] M. Pytel, T. Tokarski, M. Góral, R. Filip, Structure of Pd-Zr and Pt-Zr modified aluminide coatings deposited by a CVD method on nickel superalloys, Kov. Mat., 57(2019) 5, 343-354.

DOI: 10.4149/km_2019_5_343

Google Scholar

[4] K.A. Unocic, C.M. Parish, B.A. Pint, Characterization of alumina scale formed on coated and uncoated doped alloys, Surf. and Coat. Technol, 206 (2011), 1522-1528.

DOI: 10.1016/j.surfcoat.2011.07.044

Google Scholar

[5] W. Nowak, Naumenko D., Mor G., et al., Effect of processing parameters on MCrAlY bondcoat roughness and lifetime of APS-TBC systems, Surf. and Coat. Technol., 260 (2014), 82-89, 10.1016/j.surfcoat.2014.06.075.

DOI: 10.1016/j.surfcoat.2014.06.075

Google Scholar

[6] C. Kaplin, M. Brochu, The effect of grain size on the oxidation of NiCoCrAlY, Appl. Surf. Sci., 301 (2014), 258-267, https://doi.org/10.1016/j.apsusc.2014.02.056.

DOI: 10.1016/j.apsusc.2014.02.056

Google Scholar

[7] D. Seo, K. Ogawa, Y. Suzuki, K. Ichimura, T. Shoji, S. Murata, Comparative study and oxidation behaviour of selected MCrAlY coatings by elemental concentration profile analysis, Appl. Surf. Sci., 255 (2008), 2581-2590, https://doi.org/10.1016/j.apsusc.2008.07.141.

DOI: 10.1016/j.apsusc.2008.07.141

Google Scholar

[8] T. Galiullin, A. Chyrkin, R. Pillai, R. Vassen, W.J. Quadakkers, Effect of alloying elements in Ni-base substrate material on interdiffusion processes in MCrAlY-coated systems, Surf. and Coat. Technol., 350 (2018), 359-368, https://doi.org/10.1016/j.surfcoat.2018.07.020.

DOI: 10.1016/j.surfcoat.2018.07.020

Google Scholar

[9] H.E. Evans, M.P. Taylor, Diffusion Cells and Chemical Failure of MCrAlY Bond Coats in Thermal-Barrier Coating Systems, Oxid. Of Met. 55 (2001) 1/2, 17-34.

Google Scholar

[10] M. Elsass, M. Frommherts, A. Sholz, M. Oechsner, intedriffusion in MCrAlY coated nickel-base superalloys, Surf. and Coat. Technol., 307 (2016), 565-573.

DOI: 10.1016/j.surfcoat.2016.09.049

Google Scholar

[11] W. Brandl, D. Tomma, H.J. Grabke, The characteristics of alumina scale formed on HVOF sprayed MCrAlY coatings, Surf. and Coat. Technol., 108-109 (1998), 10-15.

DOI: 10.1016/s0257-8972(98)00613-6

Google Scholar

[12] E. Hejrami, D. Sebold, W.J. Nowak, G. Mauer, D. Naumenko, R. Vassen, W.J. Quaddakers, Isothermal and cyclic oxidation behaviour of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying, Surf. and Coat. Technol., 313 (2017), 191-201.

DOI: 10.1016/j.surfcoat.2017.01.081

Google Scholar

[13] K. Szymański, M. Góral, T. Kubaszek, P. C. Monteiro, Microstructure of TBC coatings deposited by HVAF and PS-PVD methods, Sol. St. Phen., 227 (2015), 373-376, https://doi.org/10.4028/www.scientific.net/SSP.227.373.

DOI: 10.4028/www.scientific.net/ssp.227.373

Google Scholar

[14] G. Margineand, D. Urtu, Cyclic oxidation of different treated CoNiCrAlY coatings, Appl. Surf. Sci., 258 (2012), 8307-8311, https://doi.org/10.1016/j.apsusc.2012.05.050.

DOI: 10.1016/j.apsusc.2012.05.050

Google Scholar

[15] Goral M., Dudek S., Filip S., Sieniawski J., Microstructure of Thermal Barrier Coatings (TBC's) Obtained by Using Plasma Spraying and VPA methods, Mat. Scien. Forum, 706-709, 2012, p.2412, https://doi.org/10.4028/www.scientific.net/MSF.706-709.2412.

DOI: 10.4028/www.scientific.net/msf.706-709.2412

Google Scholar

[16] Goral, M., Pytel, M., Drajewicz, M. The formation of TBCs using LPPS, CVD and PS-PVD methods on CMSX-4 single-crystal nickel superalloy, Sol. St. Phen., 227, 2015, 317, https://doi.org/10.4028/www.scientific.net/SSP.227.317.

DOI: 10.4028/www.scientific.net/ssp.227.317

Google Scholar

[17] Goral M.,The influence of overaluminizing on TGO formation on CMSX-4 nickel superalloy during isothermal oxidation, Mat. Sc. For., 844, 2016, 193, https://doi.org/10.4028/www.scientific.net/SSP.227.317.

DOI: 10.4028/www.scientific.net/msf.844.193

Google Scholar

[18] W. J. Nowak, T. Kubaszek, M. Góral, B. Wierzba, Durability of underaluminized thermal barrier coatings during exposure at high temperature, Surf. and Coat. Technol., 382 (2020), 1-9,.

DOI: 10.1016/j.surfcoat.2019.125236

Google Scholar