Mechanical Properties of Selective Laser-Melted Components of Alsi10mg for Prototype Vehicles

Article Preview

Abstract:

Fabrication of aluminum alloy components by traditional high-pressure die casting (HPDC) requires cost- and time-consuming tooling of steel dies, which makes HPDC uneconomic for producing low-volume components or prototypes. In comparison, powder bed-based additive manufacturing, e.g. selective laser melting (SLM), enables rapid prototyping and production of even complex-shaped components directly from computer-aided design models without needing expensive tools. However, SLM prototype components must have almost identical mechanical properties to HPDC serial components in order to emulate their functionality under different load conditions. In this work uniaxial tensile properties of cast alloy AlSi10MnMg (EN AC-43500) in condition T7, i.e. with 120-170 MPa yield stress, 200-240 MPa tensile strength and 9-12 % strain at fracture, shall be attained using selective laser melting of powder alloy AlSi10Mg (EN AC-43000). These properties were achieved by tailored heat treatment. Furthermore, the effect of hot isostatic pressing (HIP) was investigated. The results of the tensile tests confirmed the basic feasibility of substituting HPDC components with SLM components for prototyping. In particular, similar tensile strength and uniform strain were achieved for SLM samples in condition O, i.e. for SLM samples which were only annealed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

399-406

Citation:

Online since:

January 2021

Export:

Price:

* - Corresponding Author

[1] W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. 280 (2000) 37-49.

DOI: 10.1016/s0921-5093(99)00653-x

Google Scholar

[2] A. Niklas, A.I. Fernández-Calvo, A. Bakedano, S. Orden, M. da Silva, E. Nogués, E. Roset, A new secondary AlSi10MnMg (Fe) Alloy suitable for manufacturing of ductile Aluminium parts by vacuum assisted high pressure die casting technology, Metall. Ital. 6 (2016) 17-20.

DOI: 10.1016/j.matpr.2015.10.059

Google Scholar

[3] F. Trevisan, F. Calignano, M. Lorusso, J. Pakkanen, A. Aversa, E.P. Ambrosio, M. Lombardi, P. Fino, D. Manfredi, On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties, Materials 10 (2017) 76;.

DOI: 10.3390/ma10010076

Google Scholar

[4] N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, M. Kobashi, Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments, Mater. Sci. Eng. 704 (2017) 218-228.

DOI: 10.1016/j.msea.2017.08.029

Google Scholar

[5] Q. Han, Y. Jiao, Effect of heat treatment and laser surface remelting on AlSi10Mg alloy fabricated by selective laser melting, Int. J. Adv. Manuf. Technol. 102 (2019) 3315-3324.

DOI: 10.1007/s00170-018-03272-y

Google Scholar

[6] W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, Y. Shi, Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism, Mater. Sci. Eng. 663 (2016) 116-125.

DOI: 10.1016/j.msea.2016.03.088

Google Scholar

[7] L. Zhuo, Z. Wang, H. Zhang, E. Yin, Y. Wang, T. Xu, C. Li, Effect of post-process heat treatment on microstructure and properties of selective laser melted AlSi10Mg alloy, Mater. Lett. 234 (2019) 196-200.

DOI: 10.1016/j.matlet.2018.09.109

Google Scholar

[8] X. Jiang, W. Xiong, L. Wang, M. Guo, Z. Ding, Heat treatment effects on microstructure-residual stress for selective laser melting AlSi10Mg, Mater. Sci. Technol. 36 (2020) 2; 168-180.

DOI: 10.1080/02670836.2019.1685770

Google Scholar

[9] A. Iturrioz, E. Gil, M.M. Petite, F. Garciandia, A.M. Mancisidor, M. San Sebastian, Selective laser melting of AlSi10Mg alloy: influence of heat treatment condition on mechanical properties and microstructure, Weld. World 62 (2018) 885-892.

DOI: 10.1007/s40194-018-0592-8

Google Scholar

[10] W. Pei, W. Zhengying, C. Zhen, D. Jun, H. Yuyang, L. Junfeng, Z. Yatong, The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior, Appl. Surf. Sci. 408 (2017) 38-50.

DOI: 10.1016/j.apsusc.2017.02.215

Google Scholar

[11] D. Buchbinder, W. Meiners, Generative Fertigung von Aluminiumbauteilen für die Serien-produktion, Abschlussbericht, Fraunhofer Institut für Lasertechnik, Aachen, (2010).

Google Scholar

[12] S. Heilgeist, B. Heine, M. Merkel, L. Hitzler, Z. Javanbakht, A. Öchsner, The influence of post-heat treatments on the tensile strength and surface hardness of selectively laser-melted AlSi10Mg, Materialwiss. Werkstofftech. 50 (2019) 546-552.

DOI: 10.1002/mawe.201800236

Google Scholar

[13] C. Fischer, C. Schweizer, E. Augenstein, Bewertung der prozessabhängigen Werkstoff-eigenschaften von additiv gefertigtem AlSi10Mg unter statischer und niederzyklischer Ermüdungs-beanspruchung, Giesserei-Praxis 9 (2018) 40-48.

Google Scholar

[14] D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E.P. Ambrosio, S. Biamino, D. Ugues, M. Pavese, P. Fino, Additive Manufacturing of Al Alloys and Aluminium Matrix Composites (AMCs), in: Light metal alloys applications (2014) 3-34.

DOI: 10.5772/58534

Google Scholar

[15] A. Mertens, O. Dedry, D. Reuter, O. Rigo, J. Lecomte-Beckers, Thermal treatments of AlSi10-Mg processed by laser beam melting, in: Proc. 26th Int. Solid Freeform Fabrication Symp. (2015) 1007-1016.

Google Scholar

[16] DIN 50125:2016-12, Testing of metallic materials - Tensile test pieces, Beuth, Berlin, (2020).

Google Scholar

[17] Information on http://www.steelnumber.com/en/.

Google Scholar