Antimicrobial Activity of the Sodium Lauryl Sulphate Used as Surfactant in the Polymeric Encapsulation Processes

Article Preview

Abstract:

Miniemulsion polymerization process is a very versatile technique used for the polymeric encapsulation of the many essential oils. In this process some surfactant compounds are used to define the capsules characteristics, as an example the Sodium Lauryl Sulphate (SLS) that is one of the most used surfactants. But, after the miniemulsion polymerization synthesis the residual amount of SLS can manifest an antimicrobial action that can improve or to prejudice the final properties of the encapsulated products, depending of its percentual concentrations. In this sense, the objective of this work was to evaluate the antimicrobial activity of polycaprolactone (PCL) capsules synthesized with different residual concentrations of the SLS surfactant after the miniemulsion polymerization processes. The antimicrobial evaluations demonstrated from solid media diffusion test that the PCL microcapsules are microbiologically inactive for the bacteria Staphylococcus aureus and Escherichia coli when are synthetized with residual concentrations of SLS below 0.0125%. The minimum inhibitory concentration (MIC) of residual SLS for the bacteria Staphylococcus aureus is 0.0146% and for the bacteria Escherichia coli the complete bacterial inhibition not was detected at the maximum residual concentration studied of 0.1167%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1012)

Pages:

500-505

Citation:

Online since:

October 2020

Export:

Price:

* - Corresponding Author

[1] J.I.R.S. Richards, J. Benoit: Techniques de L'Ingénieur Vol. 2, ref. J2210 (2000).

Google Scholar

[2] A. Sohail, M.S. Turner, A. Coombes, T. Bostrom, B. Bhandari: International Journal of Food Microbiology Vol. 145 (1) (2011), p.162.

Google Scholar

[3] G.L. Nunes, T.M. Silva, A.T. Holkem, V. Schley, C.R. Menezes: Ciência e Natura Vol. 37 (2015), p.132.

Google Scholar

[4] M. Antonietti, K. Landfester: Progress in Polymer Science Vol. 27 (4) (2002), p.689.

Google Scholar

[5] F.R. Steinmacher: Síntese de Nanopartículas de Poli(Acetato de Vinila) via polimerização em miniemulsão. Mestrado (Dissertação). Florianópolis, 2010. Universidade Federal de Santa Catarina (UFSC). (SC).

DOI: 10.5196/physicae.v11i11.311

Google Scholar

[6] K. Landfester, N. Bechthold, F. Tiarks, M. Antonietti: Macromolecules Vol. 32 (16) (1999), p.5222.

DOI: 10.1021/ma990299+

Google Scholar

[7] F.J. Schork, Y. Luo. W. Smulders, J.P. Russum, A. Butte, K. Fontenot: Advances in Polymer Science Vol. 175 (2005), p.129.

Google Scholar

[8] L. Cordi: Estudo da Biodegradação dos filmes de Poli (ε-caprolactona), da Blenda Poli (ε-caprolactona) /Amido e do Compósito Poli (ε-caprolactona) /Amido/Pó de Fibra de Coco por Fungos e Bactérias. Mestrado (Dissertação). Campinas, 2008. Universidade Estadual de Campinas (UNICAMP). (SP).

DOI: 10.47749/t/unicamp.2008.434220

Google Scholar

[9] M.A. Woodruff, D.W. Hutmacher: Progress in Polymer Science Vol. 35 (1) (2010), p.1217.

Google Scholar

[10] L. Chu, S. Park, T. Yamaguchi, S. Nakao: Langmuir Vol. 18 (5) (2002), p.856.

Google Scholar

[11] W. Chaemsawang, W. Prasongchean, K.I. Papadopoulos, S. Sukrong, W.J. Kao, P. Wattanaarsakit: International Journal of Biomaterials Vol. (2018), p.1.

DOI: 10.1155/2018/9317878

Google Scholar

[12] K. Khoshakhlagh, M. Mohebbi, A. Koocheki, A. Allafchian: Bioactive Carbohydrates and Dietary Fibre mar. (2018).

DOI: 10.1016/j.bcdf.2018.03.001

Google Scholar

[13] L.B. PERES, L.C. Preiss, M. Wagner, F.R. Wurm, P.H.H. Araújo, K. Landfester, R. Muñoz-Espí, C. Sayer: Macromolecules Vol. 49 (18) (2016), p.6723.

DOI: 10.1021/acs.macromol.6b01530

Google Scholar

[14] M. Elgammal, R. Schneider, M. Gradzielski: Dyes and Pigments Vol. 133 (2016), p.467.

Google Scholar

[15] N.K. Ray, V. Gundabala: Progress in Organic Coatings Vol. 111 (2017), p.93.

Google Scholar

[16] F. Liu, G. Liu:Journal of Polymer Research Vol. 25 (2) (2018), p.1.

Google Scholar

[17] L.B. PERES: Obtenção de nanopartículas de PLLA e nanopartículas blenda PLLA/PMMA e PLLA/OS para incorporação de um análogo da isoniazida. Mestrado (Dissertação). Florianópolis, 2012. Universidade Federal de Santa Catarina (UFSC). (SC).

DOI: 10.5196/physicae.v11i11.311

Google Scholar

[18] CLSI. Performance standards for antimicrobial disk susceptible tests. Approved standard – Eleventh Edition. CLSI document M02-A11 (ISBN 1-56238-782-0). CLSI, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania, 19087- 1898 USA. 2012 (a).

Google Scholar

[19] CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard—Ninth Edition. CLSI document M07-A9 (ISBN 1-56238-784-7). CLSI, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania, 19087- 1898 USA. 2012 (b).

Google Scholar

[20] S. BURT: International Journal of Food Microbiology Vol. 94 (3) (2004), p.223.

Google Scholar

[21] F. Nazzaro, F. Fratianni, L. Martino, R. Coppola, V. Feo: Pharmaceuticals Vol. 6 (12) (2013), p.1451.

DOI: 10.3390/ph6121451

Google Scholar