Impact of ZnO Concentration on the Stability of Agglomerates of TiO2 Engineered Nanoparticles: Effects of the pH, Ionic Strength and Zeta Potential

Article Preview

Abstract:

The stability of nanoparticles in natural aquatic systems is of great interest to the environmental risk assessment. The relevance of this study lies in the fact that nanoparticles are being produced and used in commercial products on a large scale, which makes the need to study its transport through the environment, especially in soil and water important due to their potential interactions with the ecosystems. In this research, the effects of nanoparticles of zinc oxide (NPZnO) in the behavior of nanoparticles of titanium dioxide (NPTiO2) was investigated. The influence of pH, ionic strength and zeta potential of the hazardous nanoparticles into soil landfills are studied using experimental procedures. Leaching experiments were prepared within soil column simulating landfills layers. Leaching experiments were carried out to simulate the capture and attenuation of these nanomaterials in municipal waste landfills. The results found that the presence of NPTiO2 in suspensions increases the stability of the suspensions keeping higher nanoparticles concentrations, while NPZnO promotes rapid sedimentation with lower equilibrium concentration of nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1012)

Pages:

167-172

Citation:

Online since:

October 2020

Export:

Price:

[1] R.F Domingos, N. Tufenkji, K.J. Wilkinson: Environ. Sci. Technol. Vol. 43 (2009), p.1282.

Google Scholar

[2] B. Espinasse, E.M. Hotze, M.R. Wiesner: Environ. Sci. Technol. Vol. 41 (2007), p.7396.

Google Scholar

[3] E.M. Oliveira, I.C.R.P. Valadão, A.S.F. Araújo, J.A. Castro: Mater. Sci. Forum Vol. 802 (2014), p.624.

Google Scholar

[4] E.M. Oliveira, J.A. Castro, I. Leão: Mater. Sci. Forum Vol. 869 (2016), p.778.

Google Scholar

[5] J.E. Canas, B. Qi, S. Li, J.D. Maul, S.B. Cox, S. Das, M.J. Green: J. Environ. Monit. Vol. 13 (2011), p.3351.

Google Scholar

[6] H. Chai, J. Yao, J. Sun, C. Zhang, W. Liu, M. Zhu: Bull. Environ. Contam. Toxicol. Vol. 94 (2015), p.490.

Google Scholar

[7] D. Cupi, N.B. Hartmann, A. Baun: Environ. Toxicol. Chem. Vol. 34 (2015), p.497.

Google Scholar

[8] P.A. Holden, F. Klaessig, R.F. Turco, J.H. Priester, C.M. Rico, H. Avila-Arias: Environ. Sci. Technol. Vol. 48 (2014), p.10541.

DOI: 10.1021/es502440s

Google Scholar

[9] P.S. Tourinho, C.A.M. van Gestel, S. Lofts, C. Svendsen, A.M.V.M. Soares, S. Loureiro: Environ. Toxicol. Chem. Vol. 31(2012), p.1679.

Google Scholar

[10] D.P. Jaisi, N.B. Saleh, R.E. Blake, M. Elimelech: Environ. Sci. Technol. Vol. 42 (2008), p.8317.

Google Scholar

[11] E.M. Oliveira, J.A. Castro, I. Leão: Mater. Sci. Forum. Vol. 869 (2016), p.778.

Google Scholar

[12] H.F. Lecoanet, J. Bottero, M.R. Wiesner: Environ. Sci. Technol. Vol. 38 (2004), p.5164.

Google Scholar

[13] K.M. Yao, M.M. Habibian, C.R. Omelia: Environ. Sci. Technol. Vol. 5 (1971), p.1105.

Google Scholar

[14] R. Kretzschmar, K. Barmettler, D. Grolimund, Y.D. Yan, M. Borkovec, H. Sticher: Water Resour. Res. Vol. 33 (1997), p.1129.

DOI: 10.1029/97wr00298

Google Scholar

[15] E.M. Oliveira, D.A. Nogueira, L.C.R. Lopes, J.F.S. Feiteira, J.A. Castro: J. Mech. Eng. Autom. Vol. 6 (2016), p.47.

Google Scholar

[16] A.R. Morrisson, J.S. Park, B.L. Sharp: Analyst. Vol. 115 (1990), p.1429.

Google Scholar

[17] J. Fang, X. Q. Shan, B. Wen, J.M. Lin, G. Owens: Environ. Pollut. Vol. 4 (2009), p.1101.

Google Scholar