4H-SiC MOSFET Source and Body Laser Annealing Process

Article Preview

Abstract:

This work describes the development of a new post-implant crystal recovery technique in 4H-SiC using XeCl (l=308 nm) multiple laser pulses in the ns regime. Characterization was carried out through micro-Raman spectroscopy, Photoluminescence (PL), Transmission Electron Microscopy (TEM) and outcomes were than compared with 1h thermally annealed at 1650-1770-1750 °C P implanted samples (source implant) and P and Al implanted samples for 30 minutes at 1650 °C (source and body implants). Experimental results demonstrate that laser annealing enables crystal recovery in the energy density range between 0.50 and 0.60 J/cm2. Unlike the results obtained with thermal annealing where stress up to 172 Mpa and high carbon vacancies (Vc) concentration is recorded, laser annealing provides almost stress free samples and much less defective crystal avoiding intra-bandgap carrier recombination. Implant was almost preserved except for step-bouncing and surface oxidation phenomena leading to surface roughening. However, the results of this work gives way to laser annealing process practicability for lattice damage recovery and dopant activation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

705-711

Citation:

Online since:

July 2020

Export:

Price:

* - Corresponding Author

[1] R. Nipoti, H. M. Ayeddh, and G. Svensson Mat. Sci. Semicon. Proc. 78, (2017), 13-21.

Google Scholar

[2] V. Šimonka, A. Toifl, A. Hössinger, et al. Transient model for electrical activation of aluminium and phosphorus-implanted silicon carbide J. Appl. Phys, 123, (2018), 325701.

DOI: 10.1063/1.5031185

Google Scholar

[3] Y. Hishida, M. Watanabe, K. Nakashima, and O. Eryu, Excimer laser annealing of ion-implanted 6H-silicon carbide, Mater. Sci. Forum, 873, (2000), 338–342.

DOI: 10.4028/www.scientific.net/msf.338-342.873

Google Scholar

[4] S. Ahmed, C. J. Barbero, and T. W. Sigmon, Activation of ion implanted dopants in αSiC Appl. Phys. Lett. 66, (1995), 712-714.

DOI: 10.1063/1.114108

Google Scholar

[5] Y. Tanaka, H. Tanoue, and K. Arai, Electrical activation of the ion-implanted phosphorus in 4H-SiC by excimer laser annealing J. Appl. Phys 93, (2003), 5934.

DOI: 10.1063/1.1565190

Google Scholar

[6] C. Boutopoulos, P.Terzis, et al, Laser annealing of Al implanted silicon carbide: Structural and optical characterization Appl. Surf. Sci. 253, (2007), 7912-7916.

DOI: 10.1016/j.apsusc.2007.02.070

Google Scholar

[7] F. Mazzamuto, S. Halty, Y. Mori, Silicon Carbide recrystallization mechanism by non-equilibrium melting laser anneal, Mater. Sci. Forum, 858, (2016), 540-543.

DOI: 10.4028/www.scientific.net/msf.858.540

Google Scholar

[8] S. Nakashima and H. Harima, Raman Investigation of SiC Polytypes, Phys. Stat. Solidi, 32, (1997), 162.

DOI: 10.1002/1521-396x(199707)162:1<39::aid-pssa39>3.0.co;2-l

Google Scholar

[9] C. Dutto, E. Fogarassy, D. Mathiot, et al, Numerical and experimental analysis of pulsed excimer laser processing of silicon carbide Appl. Surf. Sci. 362-366, (2003), 292.

DOI: 10.1016/s0169-4332(01)00518-9

Google Scholar

[10] R. Sugie and T. Uchida J. Appl. Phys, Determination of stress components in 4H-SiC power devices via Raman spectroscopy, 122, (2017), 195703.

DOI: 10.1063/1.5003613

Google Scholar

[11] H. M. Ayeddh, V. Bobal, R. Nipoti, et al. Elimination of carbon vacancies in 4H-SiC employing thermodynamic equilibrium conditions at moderate temperatures J. Appl. Phys, 115, (2014), 012005-1.

DOI: 10.1063/1.4938242

Google Scholar

[12] C. Calabretta, M. Zimbone, et al. Thermal Annealing of high dose P implantation in 4H-SiC Mat. Sci. Forum,963, (2019), 399-402.

DOI: 10.4028/www.scientific.net/msf.963.399

Google Scholar

[13] Choi, H. Y. Jeong, et al. Laser-induced phase separation of silicon carbide,7, (2016), 13562.

Google Scholar

[14] T. Kimoto, J.A. Cooper, Fundamentals of Silicon Carbide technology (2014), 202, JohnWiley & Sons Singapore Pte. Ltd.

Google Scholar

[15] C. Calabretta, M. Agati, et al. Laser Annealing of P and Al implanted 4H-SiC epitaxial layers, Materials, 12, (2019), 3362.

DOI: 10.3390/ma12203362

Google Scholar

[16] Y. Song, anf F.W. Smith, Phase diagram for the interaction of oxygen with SiC Appl. Phys Let. 81, (2002), 3061.

Google Scholar