Direct Bonding of Diamond Substrate at Low Temperatures under Atmospheric Condition

Article Preview

Abstract:

A monocrystalline diamond substrate was bonded with a Si substrate employing a direct bonding technique. The diamond and Si surfaces were functionalized with hydroxyl (–OH) groups and subsequently bonded by the thermal dehydration reaction across the bonding interface. When a diamond (111) surface was treated with a mixture of H2SO4 and H2O2, it generated an atomic bond of C–O–Si with an oxygen-plasma-irradiated Si substrate. The bonding technique of diamond using the H2SO4/H2O2 mixture is expected to contribute to the future integration of diamond and semiconductor substrates because it allows low-temperature bonding in atmospheric air with negligible crystallinity damage.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

206-210

Citation:

Online since:

July 2020

Export:

Price:

* - Corresponding Author

[1] R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology, Annu. Rev. Phys. Chem., 65 (2014) 83.

DOI: 10.1146/annurev-physchem-040513-103659

Google Scholar

[2] J. de Sanoit, E. Vanhove, P. Mailley, and P. Bergonzo, Electrochemical diamond sensors for TNT detection in water, Electrochim. Acta, 54 (2009) 5688.

DOI: 10.1016/j.electacta.2009.05.013

Google Scholar

[3] W. De Boer, J. Bol, A. Furgeri, S. Mueller, C. Sander, E. Berdermann, M. Pomorski, M. Huhtinen, Radiation hardness of diamond and silicon sensors compared, phys. stat. sol., 204, (2007) 3004.

DOI: 10.1002/pssa.200776327

Google Scholar

[4] A. Balducci, M. Marinelli, E. Milani, M. E. Morgada, A. Tucciarone, G. Verona-Rinati, Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition, Appl. Phys. Lett., 86 (2005) 193509.

DOI: 10.1063/1.1927709

Google Scholar

[5] S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, Ultraviolet Emission from a Diamond pn Junction, Science., 292 (2001) 1899.

DOI: 10.1126/science.1060258

Google Scholar

[6] C. J. H. Wort and R. S. Balmer, "Diamond as an electronic material, Materials Today, 11 (2008) 22.

Google Scholar

[7] H. Umezawa, M. Nagase, Y. Kato, and S. I. Shikata, High temperature application of diamond power device, Diam. Relat. Mater., 24 (2012) (2012).

DOI: 10.1016/j.diamond.2012.01.011

Google Scholar

[8] T. Matsumoto, H. Kato, K. Oyama, T. Makino, M. Ogura, D. Takeuchi, T. Inokum, N. Tokuda, S. Yamasaki, Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics, Sci. Rep., 6 (2016) 31585.

DOI: 10.1038/srep31585

Google Scholar

[9] H. Yamada, A. Chayahara, Y. Mokuno, H. Umezawa, S. I. Shikata, and N. Fujimori, Fabrication of 1 inch mosaic crystal diamond wafers, Appl. Phys. Express, 3 (2010) 1.

DOI: 10.1143/apex.3.051301

Google Scholar

[10] J. Liang, S. Masuya, M. Kasu, and N. Shigekawa, Realization of direct bonding of single crystal diamond and Si substrates, Appl. Phys. Lett., 110 (2017) 111603.

DOI: 10.1063/1.4978666

Google Scholar

[11] J. Liang, S. Masuya, S. Kim, T. Oishi, M. Kasu, and N. Shigekawa, Stability of diamond/Si bonding interface during device fabrication process," Appl. Phys. Express, vol. 12, p.016501, (2018).

DOI: 10.7567/1882-0786/aaeedd

Google Scholar

[12] J. Liang, Y. Zhou, S. Masuya, F. Gucmann, M. Singh, J. Pomeroy, S. Kim, M. Kuball, M. Kasu, N. Shigekawa, Annealing effect of surface-activated bonded diamond/Si interface, Diam. Relat. Mater., 93 (2019) 187.

DOI: 10.1016/j.diamond.2019.02.015

Google Scholar

[13] J. E. Graebner, S. Jin, G. W. Kammlott, J. A. Herb, and C. F. Gardinier, Unusually high thermal conductivity in diamond films, Appl. Phys. Lett., 60 (1992)1576–1578.

DOI: 10.1063/1.107256

Google Scholar

[14] G. N. Yushin, S. D. Wolter, A. V. Kvit, R. Collazo, B. R. Stoner, J. T. Prater, Z. Sitar, Study of fusion bonding of diamond to silicon for silicon-on-diamond technology, Appl. Phys. Lett., 81 (2002) 3275.

DOI: 10.1063/1.1516636

Google Scholar

[15] J. Haisma, B. A. C. M. Spierings, U. K. P. Biermann, and A. A. van Gorkum, Diversity and feasibility of direct bonding: a survey of a dedicated optical technology, Appl. Opt., 33 (1994) 1154.

DOI: 10.1364/ao.33.001154

Google Scholar

[16] T. Suni, K. Henttinen, I. Suni, and J. Mäkinen, Effects of Plasma Activation on Hydrophilic Bonding of Si and SiO2, J. Electrochem. Soc., 149 (2002) G348.

DOI: 10.1149/1.1477209

Google Scholar

[17] P.C. Chao, Kanin Chu, Jose Diaz, Carlton Creamer, Scott Sweetland, Ray Kallaher, Craig McGray, Glen D. Via, John Blevins, GaN-on-Diamond HEMTs with 11W/mm Output Power at 10GHz, MRS Adv., 1 (2016) 147.

DOI: 10.1557/adv.2016.176

Google Scholar

[18] S. Duangchan, Y. Uchchikawa, Y. Koishikawa, A. Baba, K. Nakagawa, S. Matsumoto, M. Hasegawa, S. Nishizawa, The silicon on diamond structure by low-temperature bonding technique, IEEE 65th Electronic Components and Technology Conference (ECTC), (2015) 187.

DOI: 10.1109/ectc.2015.7159590

Google Scholar

[19] R. Yoshida, D. Miyata, T. Makino, S. Yamasaki, T. Matsumoto, T. Inokuma, N Tokuda, Formation of atomically flat hydroxyl-terminated diamond (1 1 1) surfaces via water vapor annealing," Appl. Surf. Sci., 458 (2018) 222.

DOI: 10.1016/j.apsusc.2018.07.094

Google Scholar

[20] L. J. Bellamy, The Infra-red Spectra of Complex Molecules. Springer, Netherlands, (1975).

Google Scholar

[21] V. Masteika,z, J. Kowal, N. St. J. Braithwaite and T. Rogers, A Review of Hydrophilic Silicon Wafer Bonding, 3 (2014) Q42.

DOI: 10.1149/2.007403jss

Google Scholar