Effects of NaOH Concentration and Temperature on Microstructures and Magnetic Properties of Bismuth Ferrite (BiFeO3) Nanoparticles Synthesized by Coprecipitation Method

Article Preview

Abstract:

Bismuth ferrite (BiFeO3) nanoparticles has been synthesized by coprecipitation method with various NaOH concentration (4, 6, 8, and 10 M) and temperature (RT, 60, 80, and 100 C). X-ray diffraction patterns showed the emergence of Bi(OH)3 and Bi25FeO40 structures with crystallite size in the range of 15.1 nm to 35.6 nm. The particles sample was agglomerated. Hysterisis loop showed the linear M–H loops behaviour with no magnetization saturation in 15 kOe maximum field applied which indicates the antiferromagnetic properties. The coercivity field tends to increase by the increasing of the NaOH concentration and synthesis temperature. In addition, the annealing treatment could leads the increasing of coercivity fields while decreasing the magnetization of BFO sampel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-15

Citation:

Online since:

July 2020

Export:

Price:

* - Corresponding Author

[1] M. Guennou, M. Viret, Jens Kreisel, Bismuth-based perovskites as multiferroics, Comptes Rendus Physique, Elsevier Masson 16 (2015) 182 - 192.

DOI: 10.1016/j.crhy.2015.01.008

Google Scholar

[2] S. Godaraa, N. Sinhaa, G. Raya, B. Kumar, Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route, Journal of Asian Ceramic Societies 2 (2014) 416–421.

DOI: 10.1016/j.jascer.2014.09.001

Google Scholar

[3] A.M. Afzal, M. Umair, G. Dastgeer, M. Rizwan, M. Z. Yaqoob, R. Rashid, H. S. Munir, Effect of O-vacancies on magnetic properties of bismuth ferrite nanoparticles by solution evaporation method, Journal of Magnetism and Magnetic Materials 399 (2016) 77-80.

DOI: 10.1016/j.jmmm.2015.09.062

Google Scholar

[4] M. Ranjbar, M.E. Ghazi, M. Izadifard, Investigation of the annealing temperature effect on structural, morphology, dielectric and magnetic properties of BiFeO3 nanoparticles, Physica C: Superconductivity and its applications 549 (2018) 73–76.

DOI: 10.1016/j.physc.2018.02.052

Google Scholar

[5] T. Gao, Z. Chen, F. Niu, D. Zhou, Q. Huang, Y. Zhu, L. Qin, X. Sun, Y. Huang, Shape-controlled preparation of bismuth ferrite by hydrothermal method and their visible-light degradation properties, Journal of Alloys and Compounds 648 (2015) 564-570.

DOI: 10.1016/j.jallcom.2015.07.059

Google Scholar

[6] Q. Duan, F. Kong, X.Han, Y. Jiang, T. Liua, Y. Chang, L. Zhoud, G. Qina, X. Zhanga, Synthesis and characterization of morphology-controllable BiFeO3 particles with efficient photocatalytic activity, Materials Research Bulletin 112 (2019) 104-108.

DOI: 10.1016/j.materresbull.2018.12.012

Google Scholar

[7] H. Sangian, O. Mirzaee, M. Tajally, Reverse chemical coprecipitation an effective method for synthesis of BiFeO3 nanoparticles, Advanced Ceramics Progress 3 (2017) 31-36.

Google Scholar

[8] M. Y. Shami, M.S. Awan, M. Anis-ur-Rehman, Phase pure synthesis of BiFeO3 nanopowders using diverse precursor via co-precipitation method, Jounal of Alloys and Compounds 509 (2011) 10139-10144.

DOI: 10.1016/j.jallcom.2011.08.063

Google Scholar

[9] H. Maleki, M. Haselpour, R. Fathi, The effect of calcination conditions on structural and magnetic behavior of bismuth ferrite synthesized by co-precipitation method, Journal of Materials Science: Materials in Electronics 29 (2018) 4320-4326.

DOI: 10.1007/s10854-017-8379-z

Google Scholar

[10] H. Ke,W. Wang, Y. Wang, J. Xu, D. Jia, Z. Lu, Y. Zhou, Factors controlling pure-phase multiferroic BiFeO3 powders synthesized by chemical co-precipitation, Journal of Alloys and Compounds 509 (2011) 2192-2197.

DOI: 10.1016/j.jallcom.2010.09.213

Google Scholar

[11] H. Shokrollahi, Magnetic, electrical and structural characterization of BiFeO3 nanoparticles synthesized by co-precipitation, Powder Technology 235 (2013) 953-958.

DOI: 10.1016/j.powtec.2012.12.008

Google Scholar

[12] A. Abid, M. Hasan, S.S. Hussain. S. Riaz, S. Naseem, Temperature-dependent phase formation, surface morphological and magnetic studies of bismuth iron oxide grown by co-precipitation method, J Supercond Nov Magn 30 (2017) 2549-2554.

DOI: 10.1007/s10948-017-4067-8

Google Scholar

[13] M. Muneeswaran, P. Jegatheesan, N.V. Giridharan, Synthesis of nanosized BiFeO3 powders by coprecipitation method, Journal of Experimental Nanoscience 8 (2013) 341-346.

DOI: 10.1080/17458080.2012.685954

Google Scholar

[14] H. Xie, K. Wang, Y. Jiang, Y. Zhao, An improved co-precipitation method to synthesize three bismuth ferrites synthesis and reactivity in inorganic, Metal-Organic and Nano-Metal Chemistry 44 (2014) 1363-1367.

DOI: 10.1080/15533174.2013.801859

Google Scholar

[15] X. Wang, C. Yang, D. Zhou, Z. Wang, M. Jin, Chemical co-precipitation synthesis and properties of pure-phase BiFeO3, Chemical Physics 713 (2018) 185-188.

DOI: 10.1016/j.cplett.2018.09.043

Google Scholar

[16] P. Kumar, P. Chand, A. Joshi, Effect of annealing temperature on structural and dielectric properties of bismut ferrite nanostructures, AIP Conference Proceedings 2141 (2019) 040007–1-040007–5.

DOI: 10.1063/1.5122344

Google Scholar

[17] N. A. Lomanova , V. V. Gusarov, Influence of synthesis temperature on BiFeO3 nanoparticles formation, Nanosystems: Physics, Chemistry, Mathematics 4 (2013) 696-705.

Google Scholar

[18] X. Xu, Q. Xu, Y. Huang, X. Hu, Y. Huang, G. Wang, X. Hu, N. Zhuang, Control of crystal phase and morphology in hydrothermal synthesis of BiFeO3 crystal, J. of Crystal Growth 437 (2016) 42-48.

DOI: 10.1016/j.jcrysgro.2015.12.015

Google Scholar

[19] G. Madras, and B. J. McCoy, Temperature effects on the transition from nucleation and growth to Oswald Ripening, Chemical Engineering Science, 59 (2004) 2753-2765.

DOI: 10.1016/j.ces.2004.03.022

Google Scholar

[20] R. Koferstein, Synthesis, phase evolution and properties of phase-pure nanocrystalline BiFeO3 prepared by a starch-based combustion method, Journal of Alloys and Compounds 590 (2014) 324-330.

DOI: 10.1016/j.jallcom.2013.12.120

Google Scholar

[21] Y. Sun, X. Xiong, Z. Xiang, H. Liu, Y. Zhou, M. Luo, C. Wang, Study on visible light response and magnetism of biamuth ferrites synthesized by a low temperature hydrothermal method, Ceramics International 39 (2013) 4651-4656.

DOI: 10.1016/j.ceramint.2012.10.212

Google Scholar

[22] M. Sakar, S. Balakumar, P. Saravanan, S.N. Jaisankar, Annealing temperature mediated physical properties of bismuth ferrite (BiFeO3) nanostructures synthesized by a novel wet chemical method, Materials Research Bulletin 48 (2013) 2878-2885.

DOI: 10.1016/j.materresbull.2013.04.008

Google Scholar

[23] H.M. Hashem, M. H. Hamed, Preparation parameters optimization and structure investigation of multiferroic bismuth ferrite, Materials Chem and Physc 211 (2018) 445-451.

DOI: 10.1016/j.matchemphys.2018.03.012

Google Scholar