Monitoring of Particulate Matter Concentrations in Kosice-Krasna, Slovakia: A Case Study

Article Preview

Abstract:

This study aims to carry out an experimental investigation of particulate matter (PM) concentrations, temperature, humidity and air velocity. Košice - Krásna is located in the south-eastern part of the city of Kosice on both sides of the river Hornád. Locality Na Hore II is a residential area that was under construction during the monitoring period. This study also investigates the relationship between various fractions of particulate matter (PM0.5, PM1, PM2.5, PM5 and PM10) in outdoor and indoor environment. Indoor mean concentration of PM2.5 was 3.92 μg/m3 and outdoor mean concentration of PM2.5 was 15.41 μg/m3. An indoor mean concentration of PM10 was 13.77 μg/m3 and outdoor mean concentration of PM10 was 38.34 μg/m3. Permissible value for indoor PM10 (50 μg/m3) was exceeded. I/O ratio were <1 for all fractions of particulate matters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-150

Citation:

Online since:

April 2020

Export:

Price:

* - Corresponding Author

[1] WHO, information on https://www.who.int/emergencies/ten-threats-to-global-health-in-(2019).

Google Scholar

[2] EEA Report No 13/2017 Air quality in Europe — 2017 report, presents an updated analysis of air quality and its impacts, based on official data from more than 2 500 monitoring stations across Europe in 2015, information on https://www.eea.europa.eu/publications/air-quality-in-europe-(2017).

DOI: 10.1016/b978-0-12-801883-5.00022-x

Google Scholar

[3] EEA Report No 12/2018, information on https: https://www.eea.europa.eu/publications/air-quality-in-europe-(2018).

Google Scholar

[4] Q.Y. Meng et al, Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: Analyses of RIOPA data, Journal of Exposure Sci. & Envi. Epidem.15, 17–28 (2005).

Google Scholar

[5] M.S. Hassanvand et al, Indoor/outdoor relationships of PM10, PM2.5, and PM1 mass concentrations and their water-soluble ions in a retirement home and a school dormitory, Atmos. Envi. 82, 375-382 (2014).

DOI: 10.1016/j.atmosenv.2013.10.048

Google Scholar

[6] T. Wainman, J. Zhang, C.J. Weschler, P.J. Lioy, Ozone and limonene in indoor air: a source of submicron particle exposure, Envi. Heal. Persp. 108(12), 1139-45 (2000).

DOI: 10.1289/ehp.001081139

Google Scholar

[7] S.E. Chatoustsidou, J. Ondráček, O. Tesar, K. Tørseth, V. Ždímal, M. Lazaridis, Indoor/outdoor particulate matter number and mass concentration in modern offices, Build. Envi. 92, 462-474 (2015).

DOI: 10.1016/j.buildenv.2015.05.023

Google Scholar

[8] A. Stamatelopoulou, D.N. Asimakopoulos, T. Maggos, Effects of PM, TVOCs and comfort parameters on indoor air quality of residences with young children, Build. Envi. 150, 233-244 (2019).

DOI: 10.1016/j.buildenv.2018.12.065

Google Scholar

[9] P. Urso, A. Cattaneo, G. Garramone, C. Peruzzo, D.M. Cavallo, P. Carrer, Identification of particulate matter determinants in residential homes, Build. Envi. 86, 61-69 (2015).

DOI: 10.1016/j.buildenv.2014.12.019

Google Scholar

[10] X. Chen, T.J. Ward, J. Cao, S. Lee, J.C. Chow and G.N.C. Lau, Determinants of personal exposure to fine particulate matter (PM2.5) in adult subjects in Hong Kong, Sci. Total Envi. 628–629, 1165-1177 (2018).

DOI: 10.1016/j.scitotenv.2018.02.049

Google Scholar

[11] Y. Zhan, K. Johnson, C. Norris, M.M. Shafer, M.H. Bergin, Y. Zhang and J.J. Schauer, The influence of air cleaners on indoor particulate matter components and oxidative potential in residential households in Beijing, Sci. Total Envi. 626, 507-518 (2018).

DOI: 10.1016/j.scitotenv.2018.01.024

Google Scholar

[12] B. Feng, X. Song, M. Dan, J. Yu, Q. Wang, M. Shu, H. Xu, T. Wang, J. Chen, Y. Zang, Q. Zhao, R. Wu, S. Liu, J.Z. Yu, T. Wang, W. Huang, High level of source-specific particulate matter air pollution associated with cardiac arrhythmias, Sci.Total Envi. 20, 1285-1293 (2019).

DOI: 10.1016/j.scitotenv.2018.12.178

Google Scholar

[13] T. Honda, M.N. Eliot, C.B. Eaton, E. Whitsel, J.D. Steward, L. Mu, H. Suh, A. Szpiro, J.D. Kaufman, S. Vedal and G.A. Wellenius, Long-term exposure to residential ambient fine and coarse particulate matter and incident hypertension in post-menopausal women, Envi. Int. 105, 79-85 (2017).

DOI: 10.1016/j.envint.2017.05.009

Google Scholar

[14] X. Xie, Y. Wang, Y. Yang, J. Xu, Y. Zhang, W. Tang, T. Guo, Q. Wang, H. Shen, Y. Zhang, D. Yan, Z. Peng, Y. Chen, Y. He and X. Ma, Long-term exposure to fine particulate matter and tachycardia and heart rate: Results from 10 million reproductive-age adults in China, Envi. Poll. 242, 1371-1378 (2018).

DOI: 10.1016/j.envpol.2018.08.022

Google Scholar

[15] O. Raaschu-Nielsen et al. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE), The Lan. Onco. 14(9), 813-822 (2013).

Google Scholar

[16] H. Yinguing, Y. Ji, S. Kang, T. Dong, Z. Zhou, Y. Zhang, M. Chen, W. Wu, Q. Tang, T. Chen, Y. Wang and Y. Xia, Effects of particulate matter exposure during pregnancy on birth weight: A retrospective cohort study in Suzhou, China, Sci. Total Envi. 615, 369-374 (2018).

DOI: 10.1016/j.scitotenv.2017.09.236

Google Scholar

[17] D.K. Lamichhane, J. Leem, J. Lee and H. Kim, A meta-analysis of exposure to particule mater and adverse birth outcomes, Envi. Heal. Toxic, November (2015).

Google Scholar

[18] C.A. Pope, M. Ezzati and D.W. Dockery, Fine-Particulate Air Pollution and Life Expectancy in the United States, N. Engl. J. Med. 360, 376-386 (2009).

DOI: 10.1056/nejmsa0805646

Google Scholar

[19] G. Deng, Z. Li, Z. Wang, Indoor/outdoor relationship of PM2.5 concentration in typical buildings with and without air cleaning in Beijing, Indoor Built. Envi. 26(1) (2017).

DOI: 10.1177/1420326x15604349

Google Scholar

[20] B. Pekey, Z.B. Bozkurt, H. Pekey, G. Doğan, A. Zararsız, N. Efe and G. Tuncel, Indoor/outdoor concentrations and elemental composition of PM10/PM2.5 in urban/industrial areas of Kocaeli City, Turkey, Indoor Air, 20(2), 112-125 (2010).

DOI: 10.1111/j.1600-0668.2009.00628.x

Google Scholar

[21] N. Clements, P. Keady, J.B. Emerson, N. Fierer and S.L. Miller, Seasonal Variability of Airborne Particulate Matter and Bacterial Concentrations in Colorado Homes, Atmos. 9(4), 133 (2018).

DOI: 10.3390/atmos9040133

Google Scholar

[22] D.D. Massey, A. Kulsrestha, A. Taneja, A Study on Indoor/Outdoor Concentration of Particulate Matter in Rural Residential Houses in India, Envi. Comp. Sci. 1, 218-223 (2009).

DOI: 10.1109/icecs.2009.45

Google Scholar

[23] Air Quality Report in Slovak Republic 2017, information on http://www.shmu.sk/File/oko/rocenky/SHMU_Sprava_o_kvalite_ovzdusia_SR_2017.pdf.

Google Scholar

[24] Z. Wang and Z. Yu, PM2.5 and Ventilation in a Passive Residential Building, Proc. Engin. 205, 2646-3653 (2017).

Google Scholar

[25] S.L. Wallis, G. Hernandey, D. Pozner, R. Birchmore, T. Berry, Particulate matter inresidential buildings in New Zealand: Part I.Variability of particle transport into unoccupied spaces with mechanical ventilation, Atmos. Envi. X 2, 1-9 (2019).

DOI: 10.1016/j.aeaoa.2019.100024

Google Scholar

[26] R. Sharma and R. Balasubramanian, Assessment and mitigation of indoor human exposure to fine particulate mater (PM2.5) of outdoor originin naturally ventilated residential apartments: A case study, Atmos. Envi. 212, 163-171 (2019).

DOI: 10.1016/j.atmosenv.2019.05.040

Google Scholar